Skip to main content
Log in

Characterization of absolutely continuous curves in Wasserstein spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let X be a separable, complete metric space and \(\fancyscript{P}_{p}(X)\) be the space of Borel probability measures with finite moment of order p > 1, metrized by the Wasserstein distance. In this paper we prove that every absolutely continuous curve with finite p-energy in the space \(\fancyscript{P}_{p}(X)\) can be represented by a Borel probability measure on C([0,T];X) concentrated on the set of absolutely continuous curves with finite p-energy in X. Moreover this measure satisfies a suitable property of minimality which entails an important relation on the energy of the curves. We apply this result to the geodesics of \(\fancyscript{P}_{p}(X)\) and to the continuity equation in Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L. (1995) Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19(5): 191–246

    MathSciNet  Google Scholar 

  2. Ambrosio L. (2004) Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2): 227–260

    Article  MathSciNet  Google Scholar 

  3. Ambrosio L. Transport equation and cauchy problem for non-smooth vector fields. Lecture Notes of the CIME Summer school in Cetrary, June 27–July 2, 2005, Available on line at http://cvgmt.sns.it/people/ambrosio/

  4. Ambrosio L., Kirchheim B. (2000) Rectifiable sets in metric and Banach spaces. Math. Ann. 318(3): 527–555

    Article  MathSciNet  Google Scholar 

  5. Ambrosio L., Tilli P. Topics on analysis in metric spaces, volume 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004)

  6. Ambrosio L., Gigli N., Savarè, G.: Gradient flows in metric spaces and in the Wasserstein spaces of probability measures. Birkhäuser (2005)

  7. Ambrosio L., Lisini S., Savaré, G.: Stability of flows associated to gradient vector fields and convergence of iterated transport maps. Preprint IMATI-CNR N.25-PV (2005)

  8. Benamou J.-D., Brenier Y. (2000) A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3): 375–393

    Article  MathSciNet  Google Scholar 

  9. Bourbaki N. Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale. Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1045. Hermann, Paris (1958)

  10. Brancolini, Buttazzo, Santambrogio.: Path functionals over wasserstein spaces. Available on http://cvgmt.sns.it, 2005

  11. Brézis H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)

  12. Brezis H. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maî trise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie et applications. (Theory and applications)

  13. Castaing C., Valadier M. Convex analysis and measurable multifunctions. Springer, Berlin Heidelberg New York. Lecture Notes in Mathematics, Vol. 580 (1977)

  14. Cordero-Erausquin D., McCann R.J., Schmuckenschläger M. (2001) A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2): 219–257

    Article  MathSciNet  Google Scholar 

  15. Diestel J., Uhl J.J. Jr.: Vector measures. American Mathematical Society, Providence R.I. With a foreword by B. J. Pettis, Mathematical Surveys, No. 15 (1977)

  16. Feyel D., Üstünel A. (2002) Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris 334(11): 1025–1028

    MathSciNet  Google Scholar 

  17. Feyel D., Üstünel A.S. (2004) Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space. Probab. Theory Rela. Fields 128(3): 347–385

    Article  Google Scholar 

  18. Figiel T., Wojtaszczyk P. Special bases in function spaces. In: Handbook of the geometry of Banach spaces, vol. I, pp. 561–597. North-Holland, Amsterdam (2001)

  19. Jordan R., Kinderlehrer D., Otto F. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1): 1–17 (electronic) (1998)

    Google Scholar 

  20. Lindenstrauss J., Tzafriri L. Classical Banach spaces. I. Springer, Berlin Heidelberg New York. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92 (1977)

  21. Lott J., Villani C. Ricci curvature for metric-measure spaces via optimal transport. To appear. preprint available at http://www.umpa.ens-lyon.fr/~cvillani/Cedrif/pre.LV-Ricci.pdf, 2005

  22. Lott J., Villani C. Weak curvature conditions and poincaré inequalities. To appear. preprint available at http://www.umpa.ens-lyon.fr/~cvillani/Cedrif/, 2005

  23. McCann R.J. (1997) A convexity principle for interacting gases. Adv. Math. 128(1): 153–179

    Article  MathSciNet  Google Scholar 

  24. Otto F. (2001) The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2): 101–174

    Article  MathSciNet  Google Scholar 

  25. Otto F., Villani C. (2000) Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2): 361–400

    Article  MathSciNet  Google Scholar 

  26. von Renesse M.-K., Sturm K.-T. (2005) Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58(7): 923–940

    Article  MathSciNet  Google Scholar 

  27. Rossi R., Savaré G. Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2(2), 395–431 (2003)

    Google Scholar 

  28. Schwartz L. Radon measures on arbitrary topological spaces and cylindrical measures. Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London. Tata Institute of Fundamental Research Studies in Mathematics, No. 6 (1973)

  29. Sturm K.-T.: Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. (9), 84(2), 149–168 (2005)

    Google Scholar 

  30. Sturm K.T.: On the geometry of metric measure spaces. To appear. preprint available at http://www-wt.iam.uni-bonn.de/sturm/en/index.html, 2005

  31. Sturm K.T.: On the geometry of metric measure spaces ii. To appear. preprint available at http://www-wt.iam.uni-bonn.de/sturm/en/index.html, 2005

  32. Villani C. (2003) Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI

    Google Scholar 

  33. Westdickenberg M., Otto F. Eulerian calculus for the contraction in the wasserstein distance. SIAM J. Math. Anal. (2005) (accepted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lisini.

Additional information

Communicated by L. Ambrosio

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisini, S. Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. 28, 85–120 (2007). https://doi.org/10.1007/s00526-006-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0032-2

Keywords

Navigation