Skip to main content
Log in

Bubble accumulations in an elliptic Neumann problem with critical Sobolev exponent

Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following critical elliptic Neumann problem \({- \Delta u+\mu u=u^{\frac{N+2}{N-2}}, u > 0 in \Omega; \frac{\partial u}{\partial n}=0}\) on \({\partial\Omega;}\) , Ω; being a smooth bounded domain in \({\mathbb{R}^{N}, N\geq 7, \mu > 0}\) is a large number. We show that at a positive nondegenerate local minimum point Q 0 of the mean curvature (we may assume that Q 0 = 0 and the unit normal at Q 0 is − e N ) for any fixed integer K ≥ 2, there exists a μ K > 0 such that for μ > μ K , the above problem has Kbubble solution u μ concentrating at the same point Q 0. More precisely, we show that u μ has K local maximum points Q μ1 , ... , Q μ K ∈∂Ω with the property that \({u_{\mu} (Q_j^\mu) \sim \mu^{\frac{N-2}{2}}, Q_j^\mu \to Q_0, j=1,\ldots , K,}\) and \({ \mu^{\frac{N-3}{N}} ((Q_1^{\mu})^{'}, \ldots , (Q_K^{\mu})^{'}) }\) approach an optimal configuration of the following functional

(*) Find out the optimal configuration that minimizes the following functional: \({R[Q_1^{'}, \ldots , Q_K^{'}]= c_1 \sum\limits_{j=1}^K \varphi (Q_j^{'}) + c_2 \sum\limits_{ i \not = j} \frac{1}{|Q_i^{'}-Q_j^{'}|^{N-2}}}\) where \({Q_i^\mu= ((Q_i^{\mu})^{'}, Q_{i, N}^\mu), c_1, c_2 > 0}\) are two generic constants and φ (Q) = QTGQ with G = (∇ ij H(Q0)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adimurthi Mancini G. The Neumann problem for elliptic equations with critical nonlinearity. “A tribute in honour of G. Prodi”. Scuola Norm. Sup. Pisa 9–25 (1991)

  2. Adimurthi Mancini G. (1994). Geometry and topology of the boundary in the critical Neumann problem. J. Reine Angew. Math. 456: 1–18

    MATH  MathSciNet  Google Scholar 

  3. Adimurthi Pacella F. and Yadava S.L. (1993). Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity. J. Funct. Anal. 113: 318–350

    Article  MATH  MathSciNet  Google Scholar 

  4. Bates P. and Dancer, E.N., Shi J. (1999). Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability. Adv. Differential Equations 4: 1–69

    MATH  MathSciNet  Google Scholar 

  5. Bates P. and Fusco G. (2000). Equilibria with many nuclei for the Cahn-Hilliard equation. J. Differential Equations 160: 283–356

    Article  MATH  MathSciNet  Google Scholar 

  6. Caffarelli L., Gidas B. and Spruck J. (1989). Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42: 271–297

    Article  MATH  MathSciNet  Google Scholar 

  7. del Pino M., Felmer P. and Musso M. (2003). Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc. Var. Partial Differential Equations 16: 113–145

    Article  MATH  MathSciNet  Google Scholar 

  8. del Pino M., Felmer P. and Wei J. (2000). On the role of mean curvature in some singularly perturbed Neumann problems. SIAM J. Math. Anal. 31: 63–79

    Article  MathSciNet  Google Scholar 

  9. del Pino M., Musso M. and Pistoia A. (2005). Supercritical boundary bubbling in a semilinear Neumann problem. Ann. Inst. H. Poincare Anal. Non-linearie 22(1): 45–82

    Article  MATH  MathSciNet  Google Scholar 

  10. Cerami G. and Wei J. (1998). Multiplicity of multiple interior peaks solutions for some singularly perturbed Neumann problems. Intern. Math. Res. Notes 12: 601–626

    Article  MathSciNet  Google Scholar 

  11. Dancer E.N. and Yan S. (1999). Multipeak solutions for a singular perturbed Neumann problem. Pacific J. Math. 189: 241–262

    MATH  MathSciNet  Google Scholar 

  12. Dancer E.N. and Yan S. (1999). Interior and boundary peak solutions for a mixed boundary value problem. Indiana Univ. Math. J. 48: 1177–1212

    Article  MATH  MathSciNet  Google Scholar 

  13. Ghoussoub N., Gui C. and Zhu M. (2001). On a singularly perturbed Neumann problem with the critical exponent. Comm. Partial Differential Equations 26: 1929–1946

    Article  MATH  MathSciNet  Google Scholar 

  14. Grossi M. and Pistoia A. (2000). On the effect of critical points of distance function in superlinear elliptic problems. Adv. Differential Equations 5: 1397–1420

    MATH  MathSciNet  Google Scholar 

  15. Grossi M., Pistoia A. and Wei J. (2000). Existence of multipeak solutions for a semilinear elliptic problem via nonsmooth critical point theory. Calc. Var. Partial Differential Equations 11: 143–175

    Article  MATH  MathSciNet  Google Scholar 

  16. Gui C. (1996). Multi-peak solutions for a semilinear Neumann problem. Duke Math. J. 84: 739–769

    Article  MATH  MathSciNet  Google Scholar 

  17. Gierer A. and Meinhardt H. (1972). A theory of biological pattern formation. Kybernetik (Berlin) 12: 30–39

    Article  Google Scholar 

  18. Gui C. and Lin C.S. (2002). Estimates for boundary-bubbling solutions to an elliptic Neumann problem. J. Reine Angew. Math. 546: 201–235

    MATH  MathSciNet  Google Scholar 

  19. Gui C. and Wei J. (1999). Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differential Equations 158: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  20. Gui C. and Wei J. (2000). On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Canad. J. Math. 52: 522–538

    MATH  MathSciNet  Google Scholar 

  21. Gui C., Wei J. and Winter M. (2000). Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincare, Anal. Non-lineaire 17: 47–82

    Article  MATH  MathSciNet  Google Scholar 

  22. Li Y.Y. (1998). On a singularly perturbed equation with Neumann boundary condition. Comm. Partial Differential Equations 23: 487–545

    MATH  MathSciNet  Google Scholar 

  23. Lin C.S. (2001). Locating the peaks of solutions via the maximum principle, I. Neumann problem. Comm. Pure Appl. Math. 54: 1065–1095

    Article  MATH  Google Scholar 

  24. Lin C.S., Ni W.N. and Takagi I. (1988). Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations 72: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  25. Maier-Paape S., Schmitt K. and Wang Z.Q. (1997). On Neumann problems for semilinear elliptic equations with critical nonlinearity: existence and symmetry of multi-peaked solutions. Comm. Partial Differential Equations 22: 1493–1527

    Article  MATH  MathSciNet  Google Scholar 

  26. Ni, W.-M.: Qualitative properties of solutions to elliptic problems. In: Stationary Partial Differential Equations. Handbook Differential Equations, vol. I, pp. 157–233. North-Holland, Amsterdam (2004)

  27. Ni W.N., Pan X.B. and Takagi I. (1992). Singular behavior of least-energy solutions of a semi-linear Neumann problem involving critical Sobolev exponents. Duke Math. J. 67: 1–20

    Article  MATH  MathSciNet  Google Scholar 

  28. Ni W.N. and Takagi I. (1991). On the shape of least-energy solutions to a semi-linear problem Neumann problem. Comm. Pure Appl. Math. 44: 819–851

    Article  MATH  MathSciNet  Google Scholar 

  29. Ni W.M. and Takagi I. (1993). Locating the peaks of least-energy solutions to a semi-linear Neumann problem. Duke Math. J. 70: 247–281

    Article  MATH  MathSciNet  Google Scholar 

  30. Rey O. (1990). The role of the Green’s function in a nonlinear elliptic problem involving the critical Sobolev exponent. J. Funct. Anal. 89: 1–52

    Article  MATH  MathSciNet  Google Scholar 

  31. Rey O. (1999). An elliptic Neumann problem with critical nonlinearity in three dimensional domains. Comm. Contemp. Math. 1: 405–449

    Article  MATH  MathSciNet  Google Scholar 

  32. Rey O. (2002). The question of interior blow-up points for an elliptic Neumann problem: the critical case. J. Math. Pures Appl. 81: 655–696

    MATH  MathSciNet  Google Scholar 

  33. Rey O. and Wei J. (2004). Blow-up solutions for an elliptic neumann problem with sub-or-supcritical nonlinearity, I: N = 3. J. Funct. Anal. 212: 472–499

    Article  MATH  MathSciNet  Google Scholar 

  34. Rey, O., Wei, J.: Blow-up solutions for an elliptic neumann problem with sub-or-supcritical nonlinearity, II: N ≥  4. Ann. Inst. H. Poincare, Anal. Non-lineaire 22, 459–484 (2005)

    Google Scholar 

  35. Rey O. and Wei J. (2005). Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity. J. Euro. Math. Soc. 7: 449–476

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang X.J. (1991). Neumann problem of semilinear elliptic equations involving critical Sobolev exponents. J. Differential Equations 93: 283–310

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang Z.Q. (1995). The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents. Diff. Integ. Equ. 8: 1533–1554

    MATH  Google Scholar 

  38. Wang Z.Q. (1995). High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent. Proc. Roy. Soc. Edimburgh 125A: 1003–1029

    Google Scholar 

  39. Wang Z.Q. (1996). Construction of multi-peaked solution for a nonlinear Neumann problem with critical exponent. J. Nonlinear Anal. TMA 27: 1281–1306

    Article  MATH  Google Scholar 

  40. Wang, X., Wei, J.: On the equation \({\Delta u+ K(x) u^{\frac{n+2}{n-2} \pm \epsilon^2}=0 }\) in R n. Rend. Circolo Matematico di Palermo II, 365–400 (1995)

  41. Wei J. (1998). On the interior spike layer solutions of singularly perturbed semilinear Neumann problems. Tohoku Math. J. 50: 159–178

    MATH  MathSciNet  Google Scholar 

  42. Wei J. and Xu X. (2005). Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in \({\mathbb{R}^{3}}\) Pacific J. Math. 221: 159–165

    Article  MATH  MathSciNet  Google Scholar 

  43. Wang, L., Wei, J.: Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity: N =  4 and N = 6 (preprint)

  44. Wei J. and Winter M. (1998). Stationary solutions for the Cahn-Hilliard equation. Ann. Inst. H. Poincaré, Anal. Non-linearie 15: 459–482

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhu M. (1999). Uniqueness results through a priori estimates, I. A three dimensional Neumann problem. J. Differential Equations 154: 284–317

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Wei.

Additional information

Research supported in part by an Earmarked Grant from RGC of HK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Wang, L. & Wei, J. Bubble accumulations in an elliptic Neumann problem with critical Sobolev exponent. Calc. Var. 30, 153–182 (2007). https://doi.org/10.1007/s00526-006-0082-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0082-5

Mathematics Subject Classification (2000)

Navigation