Skip to main content
Log in

A mixed problem for the infinity Laplacian via Tug-of-War games

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we prove that a function \({ u\in\mathcal{C}(\overline{\Omega})}\) is the continuous value of the Tug-of-War game described in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear) if and only if it is the unique viscosity solution to the infinity Laplacian with mixed boundary conditions

$$\left\{ \begin{aligned}-\Delta_{\infty}u(x)=0 \quad & {\rm in} \, \Omega,\\ \frac{\partial u}{\partial n}(x)=0 \quad \quad & {\rm on} \, \Gamma_N,\\ u(x)=F(x) \quad & {\rm on}\, \Gamma_D. \end{aligned} \right.$$

By using the results in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear), it follows that this viscous PDE problem has a unique solution, which is the unique absolutely minimizing Lipschitz extension to the whole \({\overline{\Omega}}\) (in the sense of Aronsson (Ark. Mat. 6:551–561, 1967) and Y. Peres et al. (J. Am. Math. Soc., 2008, to appear)) of the Lipschitz boundary data \({F:\Gamma_D \to \mathbb R }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Lecture Notes on Optimal Transport Problems. CVGMT preprint server

  2. Aronsson G.: Extensions of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aronsson G., Crandall M.G., Juutinen P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. 41, 439–505 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barles G.: Fully nonlinear Neumann type conditions for second-order elliptic and parabolic equations. J. Differ. Equ. 106, 90–106 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barles G., Busca J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order terms. Comm. Partial Diff. Equ. 26, 2323–2337 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barron E.N., Evans L.C., Jensen R.: The infinity Laplacian, Aronsson’s equation and their generalizations. Trans. Am. Math. Soc. 360, 77–101 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhattacharya, T., Di Benedetto, E., Manfredi, J.: Limits as p → ∞ of Δ p u p  =  f and related extremal problems. Rend. Sem. Mat. Univ. Politec., Torino, pp. 15–68 (1991)

  8. Crandall M.G., Gunnarsson G., Wang P.: Uniqueness of ∞-harmonic functions and the eikonal equation. Comm. Partial Diff. Equ. 32, 1587–1615 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Crandall M.G., Ishii H., Lions P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Evans L.C., Gangbo W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137, 653 (1999)

    MathSciNet  Google Scholar 

  11. García-Azorero J., Manfredi J.J., Peral I., Rossi J.D.: The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem. Nonlinear Anal. T.M.A. 66(2), 349–366 (2007)

    Article  MATH  Google Scholar 

  12. Jensen R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123, 51–74 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Juutinen P.: Principal eigenvalue of a badly degenerate operator and applications. J. Differ. Equ. 236, 532–550 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Juutinen, P., Lindqvist, P., Manfredi, J.: The infinity Laplacian: examples and observations, Papers on analysis, pp. 207–217. Rep. Univ. Jyväskylä Dep. Math. Stat., 83, Univ. Jyväskylä, Jyväskylä (2001)

  15. Kohn R.V., Serfaty S.: A deterministic-control-based approach to motion by curvature. Commun. Pure Appl. Math. 59(3), 344–407 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Neymann, A., Sorin, S. (eds.): Sthocastic games and applications. NATO Science Series, pp. 27–36 (2003)

  17. Oberman A.M.: A convergent difference scheme for the infinity-Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74, 1217–1230 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Peres, Y., Sheffield, S.: Tug-of-war with noise: a game theoretic view of the p-Laplacian (preprint)

  19. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.: Tug-of-war and the infinity Laplacian. To appear in J. Am. Math. Soc. (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Charro.

Additional information

Partially supported by project MTM2004-02223, MEC, Spain, project BSCH-CEAL-UAM and project CCG06-UAM\ESP-0340, CAM, Spain. FC also supported by a FPU grant of MEC, Spain. JDR partially supported by UBA X066 and CONICET, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charro, F., García Azorero, J. & Rossi, J.D. A mixed problem for the infinity Laplacian via Tug-of-War games. Calc. Var. 34, 307–320 (2009). https://doi.org/10.1007/s00526-008-0185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0185-2

Mathematics Subject Classification (2000)

Navigation