Skip to main content
Log in

On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the study of the nonlinear damped wave equation

$${u_{tt} - \Delta u+ h(u_t)= g(u) \quad \quad {\rm in}\,\Omega \times ] 0,\infty [,}$$

where Ω is a bounded domain of \({\mathbb{R}^2}\) having a smooth boundary ∂Ω = Γ. Assuming that g is a function which admits an exponential growth at the infinity and, in addition, that h is a monotonic continuous increasing function with polynomial growth at the infinity, we prove both: global existence as well as blow up of solutions in finite time, by taking the initial data inside the potential well. Moreover, optimal and uniform decay rates of the energy are proved for global solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aassila M., Cavalcanti M.M., Domingos Cavalcanti V.N.: Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term. Calc. Var. Partial Differ. Equ. 15(2), 155–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alves C.O., Figueiredo G.M.: Multiplicity of positive solutions for a quasilinear problem in \({\mathbb{R}^{N}}\) via Penalization Method equation in \({\mathbb{R}^N}\) . Adv. Nonlinear Stud. 5, 551–572 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Alabau-Boussouira F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51(1), 61–105 (2005)

    Article  MathSciNet  Google Scholar 

  4. Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barbu V., Lasiecka I., Rammaha A.M.: On nonlinear wave equations with degenerate damping and source terms. Trans. Am. Math. Soc. 357(7), 2571–2611 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezis, H.: Opéteurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. (French) North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam; American Elsevier Publishing Co., Inc., New York (1973)

  7. Cavalcanti M.M., Domingos Cavalcanti V.N.: Existence and asymptotic stability for evolution problems on manifolds with damping and source terms. J. Math. Anal. Appl. 291(1), 109–127 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cavalcanti M., Domingos Cavalcanti V., Martinez P.: Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term. J. Differ. Equ. 203(1), 119–158 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cavalcanti M.M., Domingos Cavalcanti V.N., Lasiecka I.: Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping–source interaction. J. Differ. Equ. 236(2), 407–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cavalcanti M.M., Domingos Cavalcanti V.N., Prates Filho J.S., Soriano J.A.: Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term. Commun. Anal. Geom. 10(3), 451–466 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Ebihara Y., Nakao M., Nambu T.: On the existence of global classical solution of initial boundary value proble for u′′ − Δuu 3 = f. Pacific J. Math. 60, 63–70 (1975)

    MATH  MathSciNet  Google Scholar 

  12. Esquivel-Avila J.: Qualitative analysis of nonlinear wave equation. Discrete Continuous Dyn. Syst. 10, 787–805 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. de Figueiredo D.G., Miyagaki O.H., Ruf B.: Elliptic equations in IR 2 with nonlinearities in the critical growth range. Calc. Var 3, 139–153 (1995)

    Article  MATH  Google Scholar 

  14. Galaktionov V.A., Pohozaev S.I.: Blow-up and critical exponents for nonlinear hyperbolic equations. Nonlinear Anal. 53, 453–467 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Georgiev V., Todorova G.: Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 109, 63–70 (1975)

    MathSciNet  Google Scholar 

  16. Kaitai L., Quanda Z.: Existence and nonexistence of global solutions for the equation of dislocation of crystals. J. Differ. Equ. 146, 5–21 (1998)

    Article  MATH  Google Scholar 

  17. Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equ. 6, 507–533 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Levine H.A., Payne L.E.: Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porus medium equation backward in time. J. Differ. Equ. 16, 319–334 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levine H.A., Serrin J.: Global nonexistence theorems for quasilinear evolutions equations with dissipation. Arch. Rational Mech. Anal. 137, 341–361 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Levine H.A., Smith A.: A potential well theory for the wave equation with a nonlinear boundary condition. J. Reine Angew. Math. 374, 1–23 (1987)

    MATH  MathSciNet  Google Scholar 

  21. Lions J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  22. Lions, J.L., Magenes, E.: Problèmes Aux Limites Non Homogènes et Applications, vol. 1. Dunod, Paris (1968)

  23. Ma T.F., Soriano J.A.: On weak solutions for an evolution equation with exponential nonlinearities. Nonlinear Anal. T. M. A. 37, 1029–1038 (1999)

    Article  MathSciNet  Google Scholar 

  24. Moser J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    Article  Google Scholar 

  25. Mochizuki K., Motai T.: On energy decay problems for wave equations with nonlinear dissipation term in R n. J. Math. Soc. Japan 47, 405–421 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pitts D.R., Rammaha M.A.: Global existence and non-existence theorems for nonlinear wave equations. Indiana Univ. Math. J. 51(6), 1479–1509 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rammaha M.A., Strei T.A.: Global existence and nonexistence for nonlinear wave equations with damping and source terms. Trans. Am. Math. Soc. 354(9), 3621–3637 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sattiger D.H.: On global solutions of nonlinear hyperbolic equations. Arch. Rat. Mech. Anal. 30, 148–172 (1968)

    Google Scholar 

  29. Serrin J., Todorova G., Vitillaro E.: Existence for a nonlinear wave equation with nonlinear damping and source terms. Differ. Integral Equ. 16(1), 13–50 (2003)

    MATH  MathSciNet  Google Scholar 

  30. Todorova G., Vitillaro E.: Blow-up for nonlinear dissipative wave equations in \({\mathbb{R}^N}\) . J. Math. Anal. Appl. 303(1), 242–257 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Todorova G.: Dynamics of non-linear wave equations. Math. Methods Appl. Sci. 27(15), 1831–1841 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Toundykov, D.: Optimal decay rates for solutions of nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponents source terms under mixed boundary conditions. Nonlinear Anal. (2007) (in press)

  33. Trudinger N.S.: On the imbeddings into Orlicz spaces and applications. J. Math. Mech. 17, 473–484 (1967)

    MATH  MathSciNet  Google Scholar 

  34. Vitillaro E.: A potential well method for the wave equation with nonlinear source and boundary daming terms. Glasgow Math. J. 44, 375–395 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vitillaro E.: Some new results on global nonexistence and blow-up for evolution problems with positive initial energy. Rend. Istit. Mat. Univ. Trieste 31, 245–275 (2000)

    MATH  MathSciNet  Google Scholar 

  36. Vitillaro E.: Global existence for the wave equation with nonlinear boundary damping and source terms. J. Differ Equ. 186, 259–298 (2002)

    Article  MathSciNet  Google Scholar 

  37. Willem M.: Minimax Theorems. Birkhäuser, Basel (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudianor O. Alves.

Additional information

The author is Supported by CNPq 300959/2005-2, CNPq/Universal 472281/2006-2 and CNPq/Casadinho 620025/2006-9.

Research of Marcelo M. Cavalcanti partially supported by the CNPq Grant 300631/2003-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, C.O., Cavalcanti, M.M. On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source. Calc. Var. 34, 377–411 (2009). https://doi.org/10.1007/s00526-008-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0188-z

Mathematics Subject Classification (2000)

Navigation