Skip to main content
Log in

The limit as p → ∞ in a nonlocal p-Laplacian evolution equation: a nonlocal approximation of a model for sandpiles

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the nonlocal ∞-Laplacian type diffusion equation obtained as the limit as p → ∞ to the nonlocal analogous to the p-Laplacian evolution,

$$u_t (t,x) = \int_{\mathbb{R}^N} J(x-y)|u(t,y) - u(t,x)|^{p-2}(u(t,y)- u(t,x)) \, dy.$$

We prove exist ence and uniqueness of a limit solution that verifies an equation governed by the subdifferential of a convex energy functional associated to the indicator function of the set \({K = \{ u \in L^2(\mathbb{R}^N) \, : \, | u(x) - u(y)| \le 1, \mbox{ when } x-y \in {\rm supp} (J)\}}\) . We also find some explicit examples of solutions to the limit equation. If the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L (0, T; L 2 (Ω)) to the limit solution of the local evolutions of the p-Laplacian, v t  = Δ p v. This last limit problem has been proposed as a model to describe the formation of a sandpile. Moreover, we also analyze the collapse of the initial condition when it does not belong to K by means of a suitable rescale of the solution that describes the initial layer that appears for p large. Finally, we give an interpretation of the limit problem in terms of Monge–Kantorovich mass transport theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreu F., Mazón J.M., Rossi J.D., Toledo J.: The Neumann problem for nonlocal nonlinear diffusion equations. J. Evol. Equ. 8, 189–215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreu F., Mazón J.M., Rossi J.D., Toledo J.: A nonlocal p-Laplacian evolution equation with Neumann boundary conditions. J. Math. Pures Appl. 90(2), 201–227 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Aronsson G., Evans L.C., Wu Y.: Fast/slow diffusion and growing sandpiles. J. Differ. Equ. 131, 304–335 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Attouch H.: Familles d’opérateurs maximaux monotones et mesurabilité. Ann. Mat. Pura Appl. 120, 35–111 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bates P., Chmaj A.: An integrodifferential model for phase transitions: stationary solutions in higher dimensions. J. Stat. Phys. 95, 1119–1139 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bates P., Chmaj A.: A discrete convolution model for phase transitions. Arch. Rat. Mech. Anal. 150, 281–305 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bates P., Fife P., Ren X., Wang X.: Travelling waves in a convolution model for phase transitions. Arch. Rat. Mech. Anal. 138, 105–136 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benilan, Ph., Crandall, M.G.: Completely accretive operators. In: Clement, Ph., et al. (eds.) Semigroups theory and evolution equations. Marcel Dekker, New York, pp. 41–76 (1991)

  9. Bénilan, Ph., Crandall, M.G., Pazy, A.: Evolution equations governed by accretive operators (2008, in press)

  10. Bénilan Ph., Evans L.C., Gariepy R.F.: On some singular limits of homogeneous semigroups. J. Evol. Equ. 3, 203–214 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., et al. (eds.) Optimal Control and Partial Differential Equations: A Volume in Honour of A. Bensoussan’s 60th Birthday, pp. 439–455. IOS Press, Amsterdam (2001)

  12. Brezis H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18, 115–175 (1968)

    MATH  MathSciNet  Google Scholar 

  13. Brezis H.: Opérateur Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam (1973)

    Google Scholar 

  14. Brezis H., Pazy A.: Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 9, 63–74 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ekeland H.I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1972)

    Google Scholar 

  16. Carrillo C., Fife P.: Spatial effects in discrete generation population models. J. Math. Biol. 50(2), 161–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chasseigne E., Chaves M., Rossi J.D.: Asymptotic behaviour for nonlocal diffusion equations. J. Math. Pures Appl. 86, 271–291 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Chen X.: Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    MATH  Google Scholar 

  19. Cortazar C., Elgueta M., Rossi J.D.: A non-local diffusion equation whose solutions develop a free boundary. Ann. Henri Poincaré 6(2), 269–281 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cortazar C., Elgueta M., Rossi J.D., Wolanski N.: Boundary fluxes for non-local diffusion. J. Differ. Equ. 234, 360–390 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cortazar C., Elgueta M., Rossi J.D., Wolanski N.: How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems. Arch. Ration. Mech. Anal. 187, 137–156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Crandall, M.G.: An introduction to evolution governed by accretive operators. In: Dynamical Systems (Proceedings of the Internatinal Symposium Brown University, Providence, RI, 1974), vol. I, pp. 131–165. Academic Press, New York (1976)

  23. Crandall, M.G.: Nonlinear semigroups and evolution governed by accretive operators. In: Browder, F. (ed.) Proceedings of Symposium in Pure Mathematics, Part I, vol. 45, pp. 305–338. American Mathematical Society, Providence (1986)

  24. Evans, L.C.: Partial differential equations and Monge–Kantorovich mass transfer. Current Developments in Mathematics, 1997 (Cambridge, MA), pp. 65–126. International Press, Boston (1999)

  25. Evans L.C., Feldman M., Gariepy R.F.: Fast/slow diffusion and collapsing sandpiles. J. Differ. Equ. 137, 166–209 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Memories of American Mathematical Society, vol. 137, no. 653 (1999)

  27. Evans L.C., Rezakhanlou Fr.: A stochastic model for growing sandpiles and its continuum limit. Commun. Math. Phys. 197, 325–345 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Feldman, M.: Growth of a sandpile around an obstacle, Monge Ampère equation: applications to geometry and optimization, (Deerfield Beach, FL, 1997), pp. 55–78, Contemp. Math., vol. 226. American Mathematical Society, Providence (1999)

  29. Fife P.: Some Nonclassical Trends in Parabolic and Parabolic-like Evolutions. Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

    Google Scholar 

  30. Fife P., Wang X.: A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions. Adv. Differ. Equ. 3(1), 85–110 (1998)

    MATH  MathSciNet  Google Scholar 

  31. Ignat L.I., Rossi J.D.: A nonlocal convection–diffusion equation. J. Funct. Anal. 251, 399–437 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mosco U.: Convergence of convex sets and solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  33. Villani C.: Topics in optimal transportation. Grad. Stud. Math. 58, 370 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Mazón.

Additional information

F. Andreu, J. M. Mazón and J. Toledo were supported by the Spanish MEC and FEDER, project MTM2005-00620, and by the project ACOMP2007/112 from Generalitat Valenciana. J. D. Rossi was partially supported by Generalitat Valenciana under AINV2007/03 and ANPCyT PICT 5009, UBA X066 and CONICET (Argentina).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreu, F., Mazón, J.M., Rossi, J.D. et al. The limit as p → ∞ in a nonlocal p-Laplacian evolution equation: a nonlocal approximation of a model for sandpiles. Calc. Var. 35, 279–316 (2009). https://doi.org/10.1007/s00526-008-0205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0205-2

Mathematics Subject Classification (2000)

Navigation