Skip to main content
Log in

Abstract

We introduce and make estimates for several new approximations that in appropriate asymptotic limits yield the key PDE for weak KAM theory, namely a Hamilton–Jacobi type equation for a potential u and a coupled transport equation for a measure σ. We revisit as well a singular variational approximation introduced in Evans (Calc Vari Partial Differ Equ 17:159–177, 2003) and demonstrate “approximate integrability” of certain phase space dynamics related to the Hamiltonian flow. Other examples include a pair of strongly coupled PDE suggested by the Lions–Lasry theory (Lasry and Lions in Japan J Math 2:229–260, 2007) of mean field games and a new and extremely singular elliptic equation suggested by sup-norm variational theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Donsker M., Varadhan S.R.S.: On a variational formula for the principal eigenvalue for operators with maximum principle. Proc. Natl. Acad. Sci. USA 72, 780–783 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Evans L.C.: Some new PDE methods for weak KAM theory. Calc. Vari. Partial Differ. Equ. 17, 159–177 (2003)

    Article  MATH  Google Scholar 

  4. Evans L.C.: Towards a quantum analogue of weak KAM theory. Commun. Math. Phys. 244, 311–334 (2004)

    Article  MATH  Google Scholar 

  5. Evans L.C.: A survey of partial differential equations methods in weak KAM theory. Commun. Pure Appl. Math. 57, 445–480 (2004)

    Article  MATH  Google Scholar 

  6. Evans L.C., Gomes D.: Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Ration. Mech. Anal. 157, 1–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fathi A.: Théorème KAM faible et theorie de Mather sur les systemes lagrangiens. C. R. Acad. Sci. Paris Sr. I Math. 324, 1043–1046 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Fathi A.: Solutions KAM faibles conjuguees et barrieres de Peierls. C. R. Acad. Sci. Paris Sr. I Math. 325, 649–652 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Fathi A.: Orbites heteroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sr. I Math. 326, 1213–1216 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Fathi, A.: The Weak KAM Theorem in Lagrangian Dynamics (Cambridge Studies in Advanced Mathematics) (to appear)

  11. Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi equations, unpublished, circa 1988

  12. Lasry J.-M., Lions P.-L.: Mean field games. Japan J. Math. 2, 229–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lasry J.-M., Lions P.-L.: Jeux a champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343, 619–625 (2006)

    MATH  MathSciNet  Google Scholar 

  14. Lasry J.-M., Lions P.-L.: Jeux a champ moyen. II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris 343, 679–684 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Rorro, M.: Thesis, Universita di Roma La Sapienza, 2008. http://www.caspur.it/~rorro/hjpack/preprint/rorro@enumath07.pdf

  16. Whitham G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence C. Evans.

Additional information

Supported in part by NSF Grant DMS-0500452.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, L.C. Further PDE methods for weak KAM theory. Calc. Var. 35, 435–462 (2009). https://doi.org/10.1007/s00526-008-0214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0214-1

Mathematics Subject Classification (2000)

Navigation