Skip to main content

Advertisement

Log in

Affine Moser–Trudinger and Morrey–Sobolev inequalities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

An affine Moser–Trudinger inequality, which is stronger than the Euclidean Moser–Trudinger inequality, is established. In this new affine analytic inequality an affine energy of the gradient replaces the standard L n energy of gradient. The geometric inequality at the core of the affine Moser–Trudinger inequality is a recently established affine isoperimetric inequality for convex bodies. Critical use is made of the solution to a normalized version of the L n Minkowski Problem. An affine Morrey–Sobolev inequality is also established, where the standard L p energy, with p > n, is replaced by the affine energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988)

    Article  Google Scholar 

  2. Adams D.R., Hedberg L.I.: Function Spaces and Potential Theory. Springer, Berlin (1996)

    Google Scholar 

  3. Alberico A.: Moser type inequalities for higher order derivatives in Lorentz spaces. Potential Anal. 28, 389–400 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alvino A., Ferone V., Trombetti G.: Moser-type inequalities in Lorentz spaces. Potential Anal. 5, 273–299 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Aubin T.: Problèmes isopérimetriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MATH  MathSciNet  Google Scholar 

  6. Balogh Z.M., Manfredi J.J., Tyson J.T.: Fundamental solution for the Q-Laplacian and sharp Moser–Trudinger inequality in Carnot groups. J. Funct. Anal. 204, 35–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beckner W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. 138, 213–242 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brothers J.E., Ziemer W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MATH  MathSciNet  Google Scholar 

  9. Campi S., Gronchi P.: The L p-Busemann–Petty centroid inequality. Adv. Math. 167, 128–141 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carleson L., Chang S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MATH  MathSciNet  Google Scholar 

  11. Chang S.-Y.A., Yang P.C.: Conformal deformation of metrics on S 2. J. Differ. Geom. 27, 259–296 (1988)

    MATH  MathSciNet  Google Scholar 

  12. Chen W.: L p Minkowski problem with not necessarily positive data. Adv. Math. 201, 77–89 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chiti G.: Rearrangements of functions and convergence in Orlicz spaces. Appl. Anal. 9, 23–27 (1979)

    Article  MathSciNet  Google Scholar 

  14. Chou K.-S., Wang X.-J.: The L p -Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cianchi A.: Moser–Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54, 669–705 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cianchi A.: Moser–Trudinger trace inequalities. Adv. Math. 217, 2005–2044 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cianchi A., Fusco N.: Functions of bounded variation and rearrangements. Arch. Ration. Mech. Anal. 165, 1–40 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cianchi A., Fusco N.: Steiner symmetric extremals in Pólya–Szegö type inequalities. Adv. Math. 203, 673–728 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cohn W.S., Lu G.: Best constants for Moser-Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50, 1567–1591 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. de Figuereido D.G., do Ó, Marcos J., Ruf B.: On an inequality by N.Trudinger and J.Moser and related elliptic equations. Comm. Pure Appl. Math. 55, 135–152 (2002)

    Article  MathSciNet  Google Scholar 

  21. Federer H., Fleming W.: Normal and integral currents. Ann. Math. 72, 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  22. Ferone A., Volpicelli R.: Convex rearrangement: equality cases in the Pólya–Szegö inequality. Calc. Var. Partial Differ. Equ. 21, 259–272 (2004)

    MATH  MathSciNet  Google Scholar 

  23. Flucher M.: Extremal functions for Trudinger–Moser inequality in 2 dimensions. Comment. Math. Helvetici 67, 471–497 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fontana L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helvetici 68, 415–454 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gardner R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39, 355–405 (2002)

    Article  MATH  Google Scholar 

  26. Hang F.: On the higher order conformal covariant operators on the sphere. Commun. Contemp. Math. 9, 279–299 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hu C., Ma X.-N., Shen C.: On the Christoffel–Minkowski problem of Firey’s p-sum. Calc. Var. Partial Differ. Equ. 21, 137–155 (2004)

    MATH  MathSciNet  Google Scholar 

  28. Kawohl, B.: Rearrangements and convexity of level sets in PDE. Lecture Notes in Math., vol. 1150. Springer, Berlin (1985)

  29. Kawohl B.: On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems. Arch. Ration. Mech. Anal. 94, 227–243 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lin K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MATH  Google Scholar 

  31. Ludwig M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159–188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ludwig M.: Minkowski valuations. Trans. Am. Math. Soc. 357, 4191–4213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lutwak E.: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    MATH  MathSciNet  Google Scholar 

  34. Lutwak E.: The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lutwak E., Oliker V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41, 227–246 (1995)

    MATH  MathSciNet  Google Scholar 

  36. Lutwak E., Yang D., Zhang G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lutwak E., Yang D., Zhang G.: On L p affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MATH  MathSciNet  Google Scholar 

  38. Lutwak E., Yang D., Zhang G.: Sharp affine L p Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    MATH  MathSciNet  Google Scholar 

  39. Lutwak E., Yang D., Zhang G.: The Cramer–Rao inequality for star bodies. Duke Math. J. 112, 59–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lutwak E., Yang D., Zhang G.: On the L p Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev Norms and the L p Minkowski Problem. Int. Math. Res. Not. (2006) Art. ID 62987, 21 pp

  42. Maz’ya, V.M.: Classes of domains and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR 133 (1960), 527–530 (Russian); English translation: Soviet Math. Dokl. 1 (1960), 882–885

  43. Marshall D.E.: A new proof of a sharp inequality concerning the Dirichlet integral. Ark. Math. 27, 131–137 (1989)

    Article  MATH  Google Scholar 

  44. Meyer M., Werner E.: On the p-affine surface area. Adv. Math. 152, 288–313 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Moser J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

    Article  MathSciNet  Google Scholar 

  46. Pohozhaev, S.I.: On the imbedding Sobolev theorem for pl = n. Doklady Conference, Section Math. Moscow Power Inst, pp. 158–170 (1965) (Russian)

  47. Ruf B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb {R}^2}\) . J. Funct. Anal. 219, 340–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  48. Ryabogin D., Zvavitch A.: The Fourier transform and Firey projections of convex bodies. Indiana Univ. Math. J. 53, 667–682 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. Schütt C., Werner E.: Surface bodies and p-affine surface area. Adv. Math. 187, 98–145 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  50. Stancu A.: The discrete planar L 0-Minkowski problem. Adv. Math. 167, 160–174 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  51. Schneider R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  52. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  53. Talenti, G.: Inequalities in rearrangement invariant function spaces. In: Krbec, M., Kufner, A., Opic, B., Rákosnik, J. (eds.) Nonlinear Analysis, Function Spaces and Applications, vol. 5, pp. 177–230. Prometheus, Prague (1994)

  54. Trudinger N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MATH  MathSciNet  Google Scholar 

  55. Yudovic, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad.Nauk SSSR, vol. 138, pp. 805–808 (1961), English translation in Soviet Math. Doklady 2 (1961), 746–749

  56. Zhang G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cianchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cianchi, A., Lutwak, E., Yang, D. et al. Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. 36, 419–436 (2009). https://doi.org/10.1007/s00526-009-0235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0235-4

Mathematics Subject Classification (2000)

Navigation