Skip to main content

Advertisement

Log in

Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We give a new proof of certain cases of the sharp HLS inequality. Instead of symmetric decreasing rearrangement it uses the reflection positivity of inversions in spheres. In doing this we extend a characterization of the minimizing functions due to Li and Zhu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin Th.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MATH  MathSciNet  Google Scholar 

  2. Beckner W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138(1), 213–242 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bobkov S.G., Ledoux M.: From Brunn–Minkowski to sharp Sobolev inequalities. Ann. Mat. Pura Appl. 187(3), 369–384 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlen E.A., Loss M.: Extremals of functionals with competing symmetries. J. Funct. Anal. 88(2), 437–456 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carlen E.A., Loss M.: Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n. Geom. Funct. Anal. 2(1), 90–104 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carlen E.A., Loss M.: On the minimization of symmetric functionals. Rev. Math. Phys. 6(5A), 1011–1032 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cordero-Erausquin D., Nazaret B., Villani C.: A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties Of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

    Google Scholar 

  9. Frank, R.L., Lieb, E.H.: Spherical reflection positivity and the Hardy-Littlewood-Sobolev inequality (in preparation)

  10. Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62(1), 1–34 (1978)

    Article  Google Scholar 

  11. Glimm J., Jaffe A.: A note on reflection positivity. Lett. Math. Phys. 3(5), 377–378 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Glimm J., Jaffe A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer-Verlag, New York (1987)

    Google Scholar 

  13. Jerison D., Kenig C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121(3), 463–494 (1985)

    Article  MathSciNet  Google Scholar 

  14. Li Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6(2), 153–180 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li Y.Y., Zhu M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80(2), 383–417 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lieb, E.H.: New proofs of long range order. In: Mathematical Problems in Theoretical Physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977). Lecture Notes in Phys., vol. 80, pp. 59–67. Springer, Berlin (1978)

  17. Lieb E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  18. Lieb E.H., Loss M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  19. Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1(2), 45–121 (1985)

    MATH  MathSciNet  Google Scholar 

  20. Lopes O.: Radial symmetry of minimizers for some translation and rotation invariant functionals. J. Differ. Equ. 124(2), 378–388 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lopes O., Mariş M.: Symmetry of minimizers for some nonlocal variational problems. J. Funct. Anal. 254(2), 535–592 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. I and II. Commun. Math. Phys. 31, 83–112 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. I and II. Commun. Math. Phys. 42, 281–305 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  24. Talenti G.: Best constants in Sobolev inequality. Ann. di Matem. Pura Ed Appl. 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert L. Frank.

Additional information

Communicated by M.Struwe.

© 2009 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, R.L., Lieb, E.H. Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality. Calc. Var. 39, 85–99 (2010). https://doi.org/10.1007/s00526-009-0302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0302-x

Mathematics Subject Classification (2000)

Navigation