Skip to main content
Log in

A metric discrepancy result for the Hardy–Littlewood–Pólya sequences

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The exact law of the iterated logarithm for discrepancies of the Hardy– Littlewood–Pólya sequences is proved. The exact constant in the law of the iterated logarithm is explicitly computed in the case when the Hardy–Littlewood–Pólya sequence consists of odd numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berkes I., Philipp W., Tichy R. (2006) Empirical processes in probabilistic number theory: the LIL for the discrepancy of (n k ω) mod 1. Ill. J. Math. 50: 107–145

    MATH  MathSciNet  Google Scholar 

  2. Berkes, I., Philipp, W., Tichy, R.: Metric discrepancy results for sequence {n k x} and diophantine equations, Diophantine Approximations. In: Tichy, R., Schlickewei, H., Schmidt, K. (eds.) Festschrift for Wolfgang Schmidt, Development in Mathematics, vol. 17. Springer, Heidelberg (2008)

  3. Dhompongsa S. (1987) Almost sure invariance principles for the empirical process of lacunary sequences. Acta Math. Hung. 49: 83–102

    Article  MATH  MathSciNet  Google Scholar 

  4. Fukuyama K. (2008) The law of the iterated logarithm for discrepancies of {θn x}. Acta Math. Hung. 118: 155–170

    Article  MATH  MathSciNet  Google Scholar 

  5. Fukuyama, K.: The law of the iterated logarithm for the discrepancies of a permutation of {n k x}. Acta Math. Hung. (2008, to appear)

  6. Fukuyama K., Petit B. (2001) Le théorème limite central pour les suites de R.C. Baker. Ergod. Theory Dyn. Syst. 21: 479–492

    Article  MATH  MathSciNet  Google Scholar 

  7. Fukuyama K., Petit B. (2003) An asymptotic property of gap series II. Acta Math. Hung. 98: 245–258

    Article  MATH  MathSciNet  Google Scholar 

  8. Philipp, W.: Mixing sequences of random variables and probabilistic number theory. Mem. Am. Math. Soc. 111, (1971)

  9. Philipp W. (1975) Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith. 26: 241–251

    MATH  MathSciNet  Google Scholar 

  10. Philipp W. (1977) A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables. Ann. Probab. 5: 319–350

    Article  MATH  MathSciNet  Google Scholar 

  11. Philipp W. (1994) Empirical distribution functions and strong approximation theorems for dependent random variables. A problem of Baker in probabilistic number theory. Trans. Am. Math. Soc. 345: 705–727

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katusi Fukuyama.

Additional information

Communicated by J. Schoißengeier.

K. Fukuyama was supported in part by the Grant-in-Aid for Scientific Research (B) 17340029 from JSPS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuyama, K., Nakata, K. A metric discrepancy result for the Hardy–Littlewood–Pólya sequences. Monatsh Math 160, 41–49 (2010). https://doi.org/10.1007/s00605-008-0051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-008-0051-5

Keywords

Mathematics Subject Classification (2000)

Navigation