Skip to main content
Log in

On Dirichlet L-functions with periodic coefficients and Eisenstein series

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We prove a Lipschitz type summation formula with periodic coefficients. Using this formula, representations of the values at positive integers of Dirichlet L-functions with periodic coefficients are obtained in terms of Bernoulli numbers and certain sums involving essentially the discrete Fourier transform of the periodic function forming the coefficients. The non-vanishing of these L-functions at s = 1 are then investigated. There are additional applications to the Fourier expansions of Eisenstein series over congruence subgroups of \({SL_2(\mathbb{Z})}\) and derivatives of such Eisenstein series. Examples of a family of Eisenstein series with a high frequency of vanishing Fourier coefficients are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkan E.: Variations on Wolstenholme’s theorem. Am. Math. Monthly 101, 1001–1004 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alkan E.: Nonvanishing of Fourier coefficients of modular forms. Proc. Am. Math. Soc. 131, 1673–1680 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alkan E.: On the sizes of gaps in the Fourier expansion of modular forms. Can. J. Math. 57, 449–470 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alkan E.: Average size of gaps in the Fourier expansion of modular forms. Int. J. Number Theory 3, 207–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alkan E.: Values of Dirichlet L-functions, Gauss sums and Trigonometric sums (preprint)

  6. Alkan E., Zaharescu A.: Nonvanishing of Fourier coefficients of newforms in progressions. Acta Arith. 116, 81–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alkan E., Zaharescu A.: Nonvanishing of the Ramanujan tau function in short intervals. Int. J. Number Theory 1, 45–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alkan E., Zaharescu A.: Consecutive large gaps in sequences defined by multiplicative constraints. Can. Math. Bull. 51, 172–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alkan E., Zaharescu A.: On the gaps in the Fourier expansion of cusp forms. Ramanujan J. 16, 41–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alkan E., Xiong M., Zaharescu A.: Arithmetic mean of differences of Dedekind sums. Monatsh. Math. 151, 175–187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alkan E., Xiong M., Zaharescu A.: Quotients of values of the Dedekind eta function. Math. Ann. 342, 157–176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Alkan E., Xiong M., Zaharescu A.: A bias phenomenon on the behavior of Dedekind sums. Math. Res. Lett. 15, 1039–1052 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Andrews G.E.: q-Analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher. Discrete Math. 204, 15–25 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Andrews G.E.: Partitions. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  15. Beck M., Berndt B.C., Chan O.-Y., Zaharescu A.: Determinations of analogues of Gauss sums and other trigonometric sums. Int. J. Number Theory 1, 333–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Berndt B.C.: Generalized Dedekind eta-functions and generalized Dedekind sums. Trans. Am. Math. Soc. 178, 495–508 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Berndt B.C.: A new method in arithmetical functions and contour integration. Can. Math. Bull. 16, 381–387 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Berndt, B.C.: Character transformation formulae similar to those for the Dedekind eta-function. In: Proceedings Symposium Pure Math., vol. 24, pp. 9–30. American Mathematical Society, Providence (1973)

  19. Berndt, B.C.: The evaluation of infinite series by contour integration, pp. 119–122. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 412–460 (1973)

  20. Berndt B.C.: Character analogues of the Poisson and Euler–MacLaurin sumation formulas with applications. J. Number Theory 7, 413–445 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Berndt B.C.: Generalized Eisenstein series and modified Dedekind sums. J. Reine Angew. Math. 272, 182–193 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Berndt B.C.: Reciprocity theorems for Dedekind sums and generalizations. Adv. Math. 23, 285–316 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Berndt B.C.: Analytic Eisenstein series, theta functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 304, 332–365 (1978)

    Article  MathSciNet  Google Scholar 

  24. Berndt B.C.: An arithmetic Poisson formula. Pacific J. Math. 103, 295–299 (1982)

    MathSciNet  MATH  Google Scholar 

  25. Berndt B.C.: Ramanujan’s Notebooks Part IV. Springer, New York (1994)

    MATH  Google Scholar 

  26. Berndt B.C., Schoenfeld L.: Periodic analogues of the Euler–MacLaurin and Poisson summation formulas with applications to number theory. Acta Arith. 28, 23–68 (1975/76)

    MathSciNet  Google Scholar 

  27. Berndt B.C., Zaharescu A.: Finite trigonometric sums and class numbers. Math. Ann. 330, 551–575 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Berndt B.C., Zhang L.-C.: Ramanujan’s identities for eta functions. Math. Ann. 292, 561–573 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Carlitz L.: Some theorems on generalized Dedekind sums. Pacific J. Math. 3, 513–522 (1953)

    MathSciNet  MATH  Google Scholar 

  30. Carlitz L.: The reciprocity theorem for Dedekind sums. Pacific J. Math. 3, 523–527 (1953)

    MathSciNet  MATH  Google Scholar 

  31. Carlitz L.: A note on generalized Dedekind sums. Duke Math. J. 21, 399–404 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  32. Carlitz L.: Generalized Dedekind sums. Math Z. 85, 83–90 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Carlitz L.: Linear relations among generalized Dedekind sums. J. Reine Angew. Math. 280, 154–162 (1965)

    Article  Google Scholar 

  34. Chan O-Yeat: Weighted trigonometric sums over a half period. Adv. Appl. Math. 38, 482–504 (2007)

    Article  MATH  Google Scholar 

  35. Davenport H.: Multiplicative Number Theory. 3rd edn. Graduate Texts in Mathematics, vol. 74. Springer, New York (2000)

    Google Scholar 

  36. Dirichlet G.L.: Recherches sur diverses applications de l’analyse infinitésimale à le théorie des nombres, seconde partie. J. Reine Angew. Math. 21, 134–155 (1840)

    Article  MATH  Google Scholar 

  37. Koblitz N.: Introduction to elliptic curves and modular forms. 2nd edn. Graduate Texts in Mathematics, vol. 97. Springer, New York (1993)

    Google Scholar 

  38. Kohnen W., Sengupta J.: On the first sign change of Hecke eigenvalues of newforms. Math. Z. 254, 173–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kohnen W., Lau Y.-K., Shparlinski I.E.: On the number of sign changes of Hecke eigenvalues of newforms. J. Aust. Math. Soc. 85, 87–94 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Krishnaiah P.V., SitaRamaChandra Rao R.: On Berndt’s method in arithmetical functions and contour integration. Can. Math. Bull. 22, 177–185 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lebesgue V.A.: Suite du Memorie sur les applications du symbole \({\left(\frac{a}{b}\right)}\). J. de Math. 15, 215–237 (1850)

    Google Scholar 

  42. Lehmer D.H.: The vanishing of Ramanujan’s function τ(n). Duke Math. J. 14, 429–433 (1947)

    Article  MathSciNet  Google Scholar 

  43. Lim S.G.: Generalized Eisenstein series and several modular transformation formulae. Ramanujan J. 19, 121–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu Z.-G.: Some Eisenstein series identities related to modular equations of the seventh order. Pacific J. Math. 209, 103–130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mahlburg K.: Partition congruences and the Andrews–Garvan–Dyson crank. Proc. Natl. Acad. Sci. USA 102, 15373–15376 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nair M., Perelli A.: Sieve methods and Class number problems I. J. Reine Angew. Math. 367, 11–26 (1986)

    MathSciNet  MATH  Google Scholar 

  47. Nair M., Perelli A.: Sieve methods and Class number problems II. J. Reine Angew. Math. 388, 40–64 (1988)

    MathSciNet  MATH  Google Scholar 

  48. Pasles P., Pribitkin W.A.: A generalization of the Lipschitz summation formula and some applications. Proc. Am. Math. Soc. 129, 3177–3184 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rademacher H., Grosswald E., sums Dedekind: The Carus Mathematical Monographs, vol. 16. The Mathematical Association of America, Washington, DC (1972)

    Google Scholar 

  50. Ramanujan S.: Notebooks (2 vols). Tata Institute of Fundamental Research, Bombay (1957)

    MATH  Google Scholar 

  51. Riemann, B.: Gesammelte mathematische Werke, wissenschaftlicher Nachclass und Nachträge. Based on the edition by Heinrich Weber and Richard Dedekind. Edited and with a preface by Raghavan Narasimhan. Springer, Berlin (1990)

  52. Schemmel, V.: De Multitudine formarum secundi gradus disquisitiones. Dissertation, Breslau (1863)

  53. Wolstenholme J.: On certain properties of prime numbers. Q. J. Math. Oxford Ser. 5, 35–39 (1862)

    Google Scholar 

  54. Yang Y.: Transformation formulas for generalized Dedekind eta functions. Bull. Lond. Math. Soc. 36, 671–682 (2004)

    Article  MATH  Google Scholar 

  55. Zhao J.: Wolstenholme type theorem for multiple harmonic sums. Int. J. Number Theory 4, 73–106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Alkan.

Additional information

This article was dedicated to my parents.

E. Alkan is supported in part by the Tübitak Career Award and Distinguished Young Scholar Award, Tüba-Gebip of Turkish Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkan, E. On Dirichlet L-functions with periodic coefficients and Eisenstein series. Monatsh Math 163, 249–280 (2011). https://doi.org/10.1007/s00605-010-0211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-010-0211-2

Keywords

Mathematics Subject Classification (2000)

Navigation