Skip to main content
Log in

A characteristic stabilized finite element method for the non-stationary Navier–Stokes equations

  • Published:
Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with the analysis of a new stabilized method based on the local pressure projection. The proposed method has a number of attractive computational properties: parameter-free, avoiding higher-order derivatives or edge-based data structures. Error estimates of the velocity and the pressure are obtained for both the continuous and the fully discrete versions. Finally, some numerical experiments show that this method is highly efficient for the non-stationary Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boukir K, Maday Y (1997) A high-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 25: 1421–1454

    Article  MathSciNet  MATH  Google Scholar 

  2. Douglas J, Thomas F, Russell T (1982) Numerical method for convection-dominated diffusion problem based on combining the method of characteristics with finite element of finite difference procedures. SIAM J Numer Anal 19(5): 871–885

    Article  MathSciNet  MATH  Google Scholar 

  3. Pironneau O (1982) On the transport-diffusion algorithm and its application to the Navier–Stokes equations. Numer Math 38: 309–332

    Article  MathSciNet  MATH  Google Scholar 

  4. Süli E (1998) Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer Math 53: 459–483

    Article  Google Scholar 

  5. Baiocchi C, Brezzi F, Franca L (1993) Virtual bubbles and Galerkin-least-squares type methods. Comput Methods Appl Mech Eng 105(1): 125–141

    Article  MathSciNet  MATH  Google Scholar 

  6. Douglas J, Wang J (1989) An absolutely stabilized finite element method for the Stokes problem. Math Comput 52: 495–508

    Article  MathSciNet  MATH  Google Scholar 

  7. Franca L, Hughes T (1993) Convergence analyses of Galerkin-least-squares methods for symmetric advectiveCdiffusive forms of the Stokes and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 105(2): 285–298

    Article  MathSciNet  MATH  Google Scholar 

  8. Hughes T, Franca L, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the BabuskaCBrezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59(1): 85–99

    Article  MathSciNet  MATH  Google Scholar 

  9. Becker R, Braack M (2001) A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4): 173–199

    Article  MathSciNet  MATH  Google Scholar 

  10. Codina R, Blasco J, Buscaglia G, Huerta A (2001) Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection. Int J Numer Methods Fluids 37(4): 419–444

    Article  MATH  Google Scholar 

  11. Silvester DJ (1994) Optimal low-order finite element methods for incompressible flow. Comput Methods Appl Mech Eng 111(3–4): 357–368

    Article  MathSciNet  MATH  Google Scholar 

  12. Silvester DJ (1995) Stabilized mixed finite element methods. Numerical Analysis Report No. 262. Department of Mathematics, University of Manchester Institute of Science and Technology, Manchester

    Google Scholar 

  13. Pavel B, Bochev P, Dohrmann C, Gunzburger M (2006) Stabilized of low-order mixed finite element for the stokes equations. SIAM J Numer Anal 44(1): 82–101

    Article  MathSciNet  MATH  Google Scholar 

  14. Dohrmann C, Bochev P (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Methods Fluids 46(2): 183–201

    Article  MathSciNet  MATH  Google Scholar 

  15. Li J, He Y (2008) A stabilized finite element method based on local polynomial pressure projection for the stationary Navier–Stokes equations. Appl Numer Math 58(10): 1503–1514

    Article  MathSciNet  MATH  Google Scholar 

  16. Shang Y (2010) New stabilized finite element method for time-dependent incompressible flow problems. Int J Numer Methods Fluids 62(2): 166–187

    MATH  Google Scholar 

  17. He Y (2003) A fully discrete stabilized finite-element method for the time dependent Navier–Stokes problem. IMA J Nume Anal 23: 665–691

    Article  MATH  Google Scholar 

  18. He Y, Sun W (2007) Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math Comput 76(257): 115–136

    Article  MathSciNet  MATH  Google Scholar 

  19. Shan L, Hou Y (2009) A fully dicrete stabilized finite element method for the time-dependent Navier–Stokes equations. Appl Math Comput 215: 85–99

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen Y, Luo Y, Feng M (2007) A stabilized characteristic finite-element methods for the non-stationary Navier–Stokes equation. Numer math J Chin Univ 29(4): 350–357

    MathSciNet  MATH  Google Scholar 

  21. Temam R (1984) Navier–Stokes equations: theory and numerical analysis. North-Holland, Amsterdam

    MATH  Google Scholar 

  22. Heywood J, Rannacher R (1982) Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solution and second order error estimates for spatial discretization. SIAM Numer Anal 19: 275–311

    Article  MathSciNet  MATH  Google Scholar 

  23. Sani RL, Gresho PM, Lee RL, Griffiths DF (1981) The cause and cure of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. Part 1, and 2. Int J Numer Methods Fluids 1: 17–43

    Article  MathSciNet  MATH  Google Scholar 

  24. Li J, HE Y (2008) A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J Comput Appl Math 214(1): 58–65

    Article  MathSciNet  MATH  Google Scholar 

  25. Achdou Y, Guermond JL (2000) Analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J Numerical Anal 37(3): 799–826

    Article  MathSciNet  MATH  Google Scholar 

  26. Girault V, Raviart P (1986) Finite element methods for Navier–Stokes equations. Springer, Berlin

    MATH  Google Scholar 

  27. Shen J (1995) On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM Numer Anal 32(2): 386–403

    Article  MATH  Google Scholar 

  28. Li J, HE Y, Chen Z (2007) A new stabilized finite element method for the transient Navier–Stokes equations. Comput Methods Appl Mech Eng 197(1): 22–35

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongen Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, H., Liu, D. & Li, K. A characteristic stabilized finite element method for the non-stationary Navier–Stokes equations. Computing 93, 65–87 (2011). https://doi.org/10.1007/s00607-011-0153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-011-0153-0

Keywords

Mathematics Subject Classification (2000)

Navigation