Skip to main content
Log in

An ODE approach for the expected discounted penalty at ruin in a jump-diffusion model

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Under the assumption that the asset value follows a phase-type jump-diffusion, we show that the expected discounted penalty satisfies an ODE and obtain a general form for the expected discounted penalty. In particular, if only downward jumps are allowed, we get an explicit formula in terms of the penalty function and jump distribution. On the other hand, if the downward jump distribution is a mixture of exponential distributions (and upward jumps are determined by a general Lévy measure), we obtain closed-form solutions for the expected discounted penalty. As an application, we work out an example in Leland’s structural model with jumps. For earlier and related results, see Gerber and Landry [Insur. Math. Econ. 22:263–276, 1998], Hilberink and Rogers [Finance Stoch. 6:237–263, 2002], Asmussen et al. [Stoch. Proc. Appl. 109:79–111, 2004], and Kyprianou and Surya [Finance Stoch. 11:131–152, 2007].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen, S.: Ruin Probabilities. World Scientific, Singapore (2000)

    Google Scholar 

  2. Asmussen, S., Avram, F., Pistorius, M.R.: Russian and American put options under exponential phase-type Lévy models. Stoch. Process. Appl. 109, 79–111 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  4. Boyarchenko, S.I.: Endogenous default under Lévy processes. Working paper, University of Texas, Austin (2000)

  5. Boyarchenko, S.I., Levendorskiĭ, S.: Perpetual American options under Lévy processes. SIAM J. Control Optim. 40, 1663–1696 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyarchenko, S.I., Levendorskiĭ, S.: Barrier options and touch-and-out options under regular Lévy processes of exponential type. Ann. Appl. Probab. 12, 1261–1298 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai, J., Yang, H.: Ruin in the perturbed compound Poisson risk process under interest rate. Adv. Appl. Prob. 37, 819–835 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, T.: Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Probab. 9, 504–528 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, T.: Pricing perpetual American options driven by spectrally one-sided Lévy processes. In: Kyprianou, A. (ed.) Exotic Option Pricing and Advanced Lévy Models, pp. 195–216. Wiley, New York (2005)

    Google Scholar 

  10. Chen, Y.T., Lee, C.F., Sheu, Y.C.: On the expected discounted penalty at ruin in two-sided jump-diffusion model, submitted. National Chiao Tung University. (2006)

  11. Chen, N., Kou, S.: Credit spreads, optimal capital structure, and implied volatility with endogenous default and jump risk. University of Columbia, to appear in Math. Fin. http://www.newton.cam.ac.uk/preprints/NI05031.pdf

  12. Dufresne, F., Gerber, H.U.: Three methods to calculate the probability of ruin. ASTIN Bull. 19, 71–90 (1989)

    Article  Google Scholar 

  13. Dufresne, F., Gerber, H.U.: Risk theory for the compound Poisson process that is perturbed by diffusion. Insur. Math. Econ. 10, 51–59 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedberg, S.H., Insel, A.J., Spence, L.E.: Linear Algebra, 3rd edn. Prentice Hall, New Jersey (1997)

    MATH  Google Scholar 

  15. Gerber, H.U.: An extension of the renewal equation and its application in the collective theory of risk. Scand. Actuar. J. 205–210 (1970)

  16. Gerber, H.U., Landry, B.: On the discounted penalty at ruin in a jump-diffusion and the perpetual put option. Insur. Math. Econ. 22, 263–276 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gerber, H.U., Shiu, E.S.W.: On the time value of ruin. North Am. Actuar. J. 2, 48–78 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Hilberink, B., Rogers, L.C.G.: Optimal capital structure and endogenous default. Finance Stoch. 6, 237–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  20. Kou, S.G., Wang, H.: First passage times of a jump-diffusion process. Adv. Appl. Probab. 35, 504–531 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kyprianou, A., Surya, A.: Principles of smooth and continuous fit in the determination of endogenous bankruptcy levels. Finance Stoch. 11, 131–152 (2007)

    Article  MathSciNet  Google Scholar 

  22. Leland, H.E.: Corporate debt value bond covenants, and optimal capital structure. J. Finance 49, 1213–1252 (1994)

    Article  Google Scholar 

  23. Leland, H.E., Toft, K.: Optimal capital structure endogenous bankruptcy, and the term structure of credit spreads. J. Finance 51, 987–1019 (1996)

    Article  Google Scholar 

  24. Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  Google Scholar 

  25. Mordecki, E.: Optimal stopping and perpetual options for Lévy processes. Finance Stoch. 6, 473–493 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, New York (1999)

    MATH  Google Scholar 

  27. Sato, K.I.: In: Lévy Processes and Infinitely Divisible Distributions. Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  28. Stein, E.M., Shakarchi, R.: Real Analysis. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  29. Tenenbaum, M., Pollard, H.: Ordinary Differential Equations. Dover, New York (1985)

    Google Scholar 

  30. Tsai, C.C.-L., Wilmott, G.E.: A generalized defective renewal equation for the surplus process perturbed by diffusion. Insur. Math. Econ. 30, 51–66 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Chung Sheu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YT., Lee, CF. & Sheu, YC. An ODE approach for the expected discounted penalty at ruin in a jump-diffusion model. Finance Stoch 11, 323–355 (2007). https://doi.org/10.1007/s00780-007-0045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-007-0045-5

Keywords

JEL

Mathematics Subject Classification (2000)

Navigation