Skip to main content
Log in

Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we present rigorous a posteriori L 2 error bounds for reduced basis approximations of the unsteady viscous Burgers’ equation in one space dimension. The a posteriori error estimator, derived from standard analysis of the error-residual equation, comprises two key ingredients—both of which admit efficient Offline-Online treatment: the first is a sum over timesteps of the square of the dual norm of the residual; the second is an accurate upper bound (computed by the Successive Constraint Method) for the exponential-in-time stability factor. These error bounds serve both Offline for construction of the reduced basis space by a new POD-Greedy procedure and Online for verification of fidelity. The a posteriori error bounds are practicable for final times (measured in convective units) TO(1) and Reynolds numbers ν −1≫1; we present numerical results for a (stationary) steepening front for T=2 and 1≤ν −1≤200.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amsallem, D., Cortial, J., Farhat, C.: On-demand CFD-based aeroelastic predictions using a database of reduced-order bases and models. In: 47th AIAA Aerospace Sciences Meeting, 5–8 January 2009, Orlando, Florida (2009). Paper 2009-800

  2. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)

    Article  Google Scholar 

  3. Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: Application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris, Sér. 339, 667–672 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space (AIAA Paper 2007-2049). In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference (2007)

  5. Burkardt, J., Gunzburger, M.D., Lee, H.C.: Pod and cvt-based reduced order modeling of Navier-Stokes flows. Comput. Methods Appl. Mech. 196, 337–355 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cancès, E., Le Bris, C., Nguyen, N.C., Maday, Y., Patera, A.T., Pau, G.S.H.: Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry. In: Proceedings of the Workshop for High-dimensional Partial Differential Equations in Science and Engineering (Montreal), vol. 41, pp. 15–57 (2007)

  7. Christensen, E.A., Brons, M., Sorensen, J.N.: Evaluation of pod-based decomposition techniques applied to parameter-dependent non-turbulent flows. SIAM J. Sci. Comput. 21, 1419 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Constantin, P., Foias, C., Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  9. Deane, A., Kevrekidis, I., Karniadakis, G., Orszag, S.: Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Phys. Fluids 10, 2337–2354 (1991)

    Google Scholar 

  10. Grepl, M.: Reduced-basis approximations and a posteriori error estimation for parabolic partial differential equations. Ph.D. Thesis, Massachusetts Institute of Technology (2005)

  11. Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. M2AN (Math. Model. Numer. Anal.) 41(2), 575–605 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. M2AN (Math. Model. Numer. Anal.) 39(1), 157–181 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows. Academic Press, San Diego (1989)

    MATH  Google Scholar 

  14. Gunzburger, M.D., Peterson, J., Shadid, J.N.: Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. 196, 1030–1047 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. Math. Modell. Num. Anal. (M2AN) 42(3), 277–302 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Acad. Sci. Paris, Anal. Numér. Ser. I 345, 473–478 (2007)

    MATH  MathSciNet  Google Scholar 

  17. Ito, K., Ravindran, S.S.: A reduced basis method for control problems governed by PDEs. In: Desch, W., Kappel, F., Kunisch, K. (eds.) Control and Estimation of Distributed Parameter Systems, pp. 153–168. Birkhäuser, Basel (1998)

    Google Scholar 

  18. Ito, K., Ravindran, S.S.: A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143(2), 403–425 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ito, K., Ravindran, S.S.: Reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn. 15(2), 97–113 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ito, K., Schroeter, J.D.: Reduced order feedback synthesis for viscous incompressible flows. Math. Comput. Model. 33(1–3), 173–192 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Johansson, P.S., Andersson, H., Rønquist, E.: Reduced-basis modeling of turbulent plane channel flow. Comput. Fluids 35(2), 189–207 (2006)

    Article  MATH  Google Scholar 

  22. Johnson, C., Rannacher, R., Boman, M.: Numerical and hydrodynamic stability: Towards error control in computational fluid dynamics. SIAM J. Numer. Anal. 32(4), 1058–1079 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Joseph, D.: Stability of fluid motions. I & II. Springer Tracts in Natural Philosophy, vol. 27 & 28. Springer, New York (1976)

    Google Scholar 

  24. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. LeVeque, R.J.: Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH-Zurich. Birkhauser, Basel (1990)

    Google Scholar 

  26. Nguyen, N.C., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations; application to natural convection in a laterally heated cavity. J. Comput. Phys. (2009, submitted)

  27. Nguyen, N.C., Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; application to real-time Bayesian parameter estimation. In: Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., Tenorio, L., van Bloemen Waanders, B., Willcox, K. (eds.) Computational Methods for Large Scale Inverse Problems and Uncertainty Quantification. Wiley, New York (2009, submitted)

    Google Scholar 

  28. Nguyen, N.C., Veroy, K., Patera, A.T.: Certified real-time solution of parametrized partial differential equations. In: Yip, S. (ed.) Handbook of Materials Modeling, pp. 1523–1558. Springer, Berlin (2005)

    Google Scholar 

  29. Pierce, N., Giles, M.B.: Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev. 42(2), 247–264 (2000)

    Article  MathSciNet  Google Scholar 

  30. Porsching, T.A., Lee, M.Y.L.: The reduced-basis method for initial value problems. SIAM J. Numer. Anal. 24, 1277–1287 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  31. Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods. J. Fluids Eng. 124(1), 70–80 (2002)

    Article  Google Scholar 

  32. Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier-Stokes equations by reduced basis method. Numer. Methods PDEs 23, 923–948 (2007)

    MATH  MathSciNet  Google Scholar 

  33. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  34. Rovas, D., Machiels, L., Maday, Y.: Reduced basis output bounds methods for parabolic problems. IMA J. Appl. Math. 26, 423–445 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations—application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations; Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47, 773–788 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Veroy, K., Prud’homme, C., Patera, A.T.: Reduced-basis approximation of the viscous Burgers’ equation: Rigorous a posteriori error bounds. C. R. Acad. Sci. Paris, Sér. I 337(9), 619–624 (2003)

    MATH  MathSciNet  Google Scholar 

  38. Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A Posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (2003). Paper 2003-3847

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza.

Additional information

This work was supported by AFOSR Grants FA9550-05-1-0114 and FA-9550-07-1-0425 and the Singapore-MIT Alliance. We acknowledge many helpful discussions with Professor Yvon Maday of University of Paris VI and Dr. Paul Fischer of Argonne National Laboratory and University of Chicago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, NC., Rozza, G. & Patera, A.T. Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation. Calcolo 46, 157–185 (2009). https://doi.org/10.1007/s10092-009-0005-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-009-0005-x

Keywords

Mathematics Subject Classification (2000)

Navigation