Skip to main content
Log in

An unconstrained smooth minimization reformulation of the second-order cone complementarity problem

  • Published:
Mathematical Programming Submit manuscript

Abstract

A popular approach to solving the nonlinear complementarity problem (NCP) is to reformulate it as the global minimization of a certain merit function over ℝn. A popular choice of the merit function is the squared norm of the Fischer-Burmeister function, shown to be smooth over ℝn and, for monotone NCP, each stationary point is a solution of the NCP. This merit function and its analysis were subsequently extended to the semidefinite complementarity problem (SDCP), although only differentiability, not continuous differentiability, was established. In this paper, we extend this merit function and its analysis, including continuous differentiability, to the second-order cone complementarity problem (SOCCP). Although SOCCP is reducible to a SDCP, the reduction does not allow for easy translation of the analysis from SDCP to SOCCP. Instead, our analysis exploits properties of the Jordan product and spectral factorization associated with the second-order cone. We also report preliminary numerical experience with solving DIMACS second-order cone programs using a limited-memory BFGS method to minimize the merit function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  Google Scholar 

  2. Alizadeh, F., Schmieta, S.: Symmetric cones, potential reduction methods, and word-by-word extensions. In: Wolkowicz, H., Saigal, R., Vandenberghe, L., (eds.), Handbook of Semidefinite Programming, Kluwer, Boston, 2000, pp. 195–233

  3. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. Ser. B, 95, 249–277 (2003)

    Google Scholar 

  4. Benson, H.Y., Vanderbei, R.J.: Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming. Math. Program. Ser. B, 95, 279–302 (2003)

    Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming. 2nd ed., Athena Scientific, Belmont, 1999

  6. Chen, X.-D., Sun, D., Sun, J.: Complementarity functions and numerical experiments for second-order cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)

    Article  Google Scholar 

  7. De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996)

    Article  Google Scholar 

  8. Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math. Program. 76, 493–512 (1997)

    Article  Google Scholar 

  9. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II. Springer-Verlag, New York, 2003

  10. Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J. Optim. 7, 225–247 (1997)

    Article  Google Scholar 

  11. Faraut, U., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs, Oxford University Press, New York, 1994

  12. Ferris, M.C., Kanzow, C., Munson, T.S.: Feasible descent algorithms for mixed complementarity problems. Math. Program. 86, 475–497 (1999)

    Article  Google Scholar 

  13. Ferris, M.C., Pang, J.-S., Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Google Scholar 

  14. Ferris, M.C., Pang, J.-S., (eds.): Complementarity and Variational Problems: State of the Art. SIAM Publications, Philadelphia, 1996

  15. Ferris, M.C., Mangasarian, O.L., Pang, J.-S., eds.: Complementarity: Applications, Algorithms and Extensions. Kluwer Academic Publishers, Dordrecht, 2001

  16. Fischer, A.: A special Newton-type optimization methods. Optim. 24, 269–284 (1992)

    Google Scholar 

  17. Fischer, A.: Solution of the monotone complementarity problem with locally Lipschitzian functions. Math. Program. 76, 513–532 (1997)

    Article  Google Scholar 

  18. Fletcher, R.: Practical Methods of Optimization. 2nd ed., Wiley-Interscience, Chichester, 1987

  19. Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)

    Article  Google Scholar 

  20. Geiger, C., Kanzow, C.: On the resolution of monotone complentarity problems. Comput. Optim. Appl. 5, 155–173 (1996)

    Article  Google Scholar 

  21. Hayashi, S., Yamaguchi, T., Yamashita, N., Fukushima, M.: A matrix splitting method for symmetric affine second-order cone complementarity problems. Report, Department of Applied Mathematics and Physics, Kyoto University, Kyoto, Japan, June 2003; revised February 2004; to appear in J. Comput. Appl. Math.

  22. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

    Article  MathSciNet  Google Scholar 

  23. Isac, G.: Complementarity Problems. Springer-Verlag, Berlin, 1992

  24. Jiang, H., Qi, L.: A new nonsmooth equations approach to nonlinear complementarities. SIAM J. Control Optim. 35, 178–193 (1997)

    Article  Google Scholar 

  25. Kanzow, C.: An unconstrained optimization technique for large scale linearly constrained convex minimization problems. Comput. 53, 101–117 (1994)

    Google Scholar 

  26. Kanzow, C.: Nonlinear complementarity as unconstrained optimization. J. Optim. Theory Appl. 88, 139–155 (1996)

    Article  Google Scholar 

  27. Kanzow, C.: Global optimization techniques for mixed complementarity problems. J. Global Optim. 16, 1–21 (2000)

    Article  Google Scholar 

  28. Kanzow, C., Fukushima, M.: Solving box constrained variational inequalities by using the natural residual with D-gap function globalization. Oper. Res. Letters 23, 45–51 (1998)

    Article  Google Scholar 

  29. Kanzow, C., Kleinmichel, H.: A class of Newton-type methods for equality and inequality constrained optimization. Optim. Methods Softw. 5, 173–198 (1995)

    Google Scholar 

  30. Kanzow, C., Pieper, H.: Jacobian smoothing methods for nonlinear complementarity problems. SIAM J. Optim. 9, 342–373 (1999)

    Article  Google Scholar 

  31. Kanzow, C., Yamashita, Y., Fukushima, M.: New NCP functions and their properties. J. Optim. Theory Appl. 97, 115–135 (1997)

    Article  Google Scholar 

  32. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  Google Scholar 

  33. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Application of second-order cone programming. Lin. Algeb. Appl. 284, 193–228 (1998)

    Article  Google Scholar 

  34. Luo, Z.-Q., Tseng, P.: A new class of merit functions for the nonlinear complementarity problem. In: Ferris, M.C., Pang, J.-S., (eds.), Complementarity and Variational Problems: State of the Art, SIAM Publications, Philadelphia, 1997, pp. 204–225

  35. Mangasarian, O.L., Solodov, M.V.: Nonlinear complementarity as unconstrained and constrained minimization. Math. Program. 62, 277–297 (1993)

    Article  Google Scholar 

  36. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95, 407–430 (2003)

    Article  Google Scholar 

  37. Monteiro, R.D.C., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone programs based on the MZ-family of directions. Math. Program. 88, 61–83 (2000)

    Google Scholar 

  38. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer-Verlag, New York, 1999

  39. Pataki, G., Schmieta, S.: The DIMACS library of semidefinite-quadratic-linear programs. Preliminary draft, Computational Optimization Research Center, Columbia University, New York, July 2002. http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

  40. Peng, J.-M.: Equivalence of variational inequality problems to unconstrained minimization. Math. Program. 78, 347–355 (1997)

    Article  Google Scholar 

  41. Qi, L.: Regular pseudo-smooth NCP and BVIP functions and globally and quadratically convergent generalized Newton methods for complementarity and variational inequality problems. Math. Oper. Res. 24, 440–471 (1999)

    Google Scholar 

  42. Schmieta, S., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones. Math. Oper. Res. 26, 543–564 (2001)

    Article  Google Scholar 

  43. Sim, C.-K., Sun, J., Ralph, D.: A note on the Lipschitz continuity of the gradient of the squared norm of the matrix-valued Fischer-Burmeister function. Report, Department of Mathematics, National University of Singapore, Singapore, November 2004; submitted to Math. Program.

  44. Sim, C.-K., Zhao, G.: A note on treating a second order cone program as a special case of a semidefinite program. Math. Program. 102, 609–613 (2005)

    Article  Google Scholar 

  45. Solodov, M.V.: Implicit Lagrangian. In: Floudas, C., Pardalos, P., (eds.), Encyclopedia of Optimization. Kluwer Academic Publishers, Dordrecht, 1999

  46. Sturm, J.F.: Using Sedumi 1.02, A Matlab* toolbox for optimization over symmetric cones (updated for Version 1.05). Report, Department of Econometrics, Tilburg University, Tilburg, The Netherlands, August 1998–October 2001

  47. Sun, D., Qi, L.: On NCP functions. Comput. Optim. Appl. 13, 201–220 (1999)

    Article  Google Scholar 

  48. Sun, D., Sun, J.: Strong semismoothness of Fischer-Burmeister SDC and SOC functions. Math. Program. 103, to appear (2005)

  49. Sun, D., Womersley, R.S.: A new unconstrained differentiable merit function for box constrained variational inequality problems and a damped Gauss-Newton method. SIAM J. Optim. 9, 388–413 (1999)

    Article  Google Scholar 

  50. Tseng, P.: Merit function for semidefinite complementarity problems. Math. Program. 83, 159–185 (1998)

    Article  Google Scholar 

  51. Tseng, P., Yamashita, N., Fukushima, M.: Equivalence of complementarity problems to differentiable minimization: a unified approach. SIAM J. Optim. 6, 446–460 (1996)

    Article  Google Scholar 

  52. Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. Optim. Methods Softw. 11, 141–182 (1999)

    Google Scholar 

  53. Yamashita, N., Fukushima, M.: A new merit function and a descent method for semidefinite complementarity problems. In: Fukushima, M., Qi, L., (eds.), Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, Boston, 1999, pp. 405–420

  54. Yamashita, N., Taji, K., Fukushima, M.: Unconstrained optimization reformulations of variational inequality problems. J. Optim. Theory Appl. 92, 439–456 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jein-Shan Chen.

Additional information

In honor of Terry Rockafellar on his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JS., Tseng, P. An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293–327 (2005). https://doi.org/10.1007/s10107-005-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0617-0

Keywords

Mathematics Subject Classification (1991)

Navigation