Skip to main content
Log in

Conic mixed-integer rounding cuts

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer Science Division, September 2006

  2. Alizadeh F.: Interior point methods in semidefinite programming and applications to combinatorial optimization. SIAM J. Optim. 5, 13–51 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alizadeh F., Goldfarb D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Technical Report BCOL.07.04, IEOR, University of California-Berkeley, October 2007

  5. Balas E.: Disjunctive Programming. Ann. Discrete Math. 5, 3–51 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balas E., Ceria S., Cornuéjols G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)

    Article  Google Scholar 

  7. Baum S., Carlson R.C., Jucker J.V.: Some problems in applying the continuous portfolio selection model to the discrete capital budgeting problem. J. Financ. Quant. Anal. 13, 333–344 (1978)

    Article  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2001

  9. Benson, S.J., Ye, Y.: DSDP5: Software for semidefinite programming. Technical Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, September 2005. ACM Transactions on Mathematical Software (submitted)

  10. Bonami P., Biegler L.T., Conn A.R., Cornuéjols G., Grossmann I.E., Laird C.D., Lee J., Lodi A., Margot F., Sawaya N., Wächter A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186–204 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borchers B.: CSDP, a C library for semidefinite programing. Optim. Methods Softw. 11, 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  12. Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  13. Çezik M.T., Iyengar G.: Cuts for mixed 0–1 conic programming. Math. Program. 104, 179–202 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goemans M.X.: Semidefinite programming in combinatorial optimization. Math. Program. 79, 143–161 (1997)

    MathSciNet  Google Scholar 

  15. Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfyibility problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597, The Rand Corporation (1960)

  17. Kim S., Kojima M., Yamashita M.: Second order cone programming relaxation of a positive semidefinite constraint. Optim. Methods Softw. 18, 535–451 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kojima M., Tuncel L.: Cones of matrices and successive convex relaxations of nonconvex sets. SIAM J. Optim. 10, 750–778 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0–1 programs. In: Aardal, K., Gerards, A.M.H. (eds.) Lecture Notes in Computer Science, vol. 2081, pp. 293–303 (2001)

  20. Lobo M., Vandenberghe L., Boyd S., Lebret H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lovász L., Schrijver A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Luo J., Pattipati K.R., Willett P., Levchuk G.M.: Optimal and suboptimal any-time algorithms for cdma multiuser detection based on branch and bound. IEEE Trans. Commun. 52, 632–642 (2004)

    Article  Google Scholar 

  23. Luo Z.-Q.: Applications of convex optimization in signal processing and digital communication. Math. Program. 97, 117–207 (2003)

    Article  Google Scholar 

  24. Marchand H., Wolsey L.A.: Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49, 363–371 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. McBride R.D.: Finding the integer efficient frontier for quadratic capital budgeting problems. J. Financ. Quant. Anal. 16, 247–253 (1981)

    Article  Google Scholar 

  26. Mobasher A., Taherzadeh M., Khandani A.K.: A near-maximum likelihood decoding algorithm for MIMO systems based on semi-definite programming. IEEE Trans. Inform. Theory 53, 3869–3886 (2007)

    Article  MathSciNet  Google Scholar 

  27. Nemhauser G.L., Wolsey L.A.: Integer and Combinatorial Optimization. John Wiley and Sons, New York (1988)

    MATH  Google Scholar 

  28. Nemhauser G.L., Wolsey L.A.: A recursive procedure for generating all cuts for 0–1 mixed integer programs. Math. Program. 46, 379–390 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nesterov, Y., Nemirovski, A.: A general approach to polynomial-time algorithm design for convex programming. Technical report, Center. Econ. Math. Inst, USSR Acad. Sci., Moskow, USSR (1988)

  30. Nesterov, Y., Nemirovski, A.: Self-concordant functions and polynomial time methods in convex programming. Technical report, Center. Econ. Math. Inst, USSR Acad. Sci., Moskow, USSR (1990)

  31. Nesterov, Y., Nemirovski, A.: Conic formulation of a convex programming problem and duality. Technical report, Center. Econ. Math. Inst, USSR Acad. Sci., Moskow, USSR (1991)

  32. Nesterov Y., Nemirovski A.: Interior-Point Polynomial Algorithms for Convex Programming. SIAM, Philedelphia (1993)

    Google Scholar 

  33. Schrijver A.: Theory of Linear and Integer Programming. John Wiley and Sons, Chichester (1987)

    Google Scholar 

  34. Sherali H.D., Adams W.P.: Hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sherali, H.D., Shetti, C.: Optimization with disjunctive constraints, vol. 181 of Lectures on Econ. Math. Systems. Springer Verlag, Berlin, Heidelberg, New York (1980)

  36. Sherali H.D., Tunçbilek C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Global Optim. 7, 1–31 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stubbs R., Mehrotra S.: A branch-and-cut methods for 0–1 mixed convex programming. Math. Program. 86, 515–532 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stubbs R., Mehrotra S.: Generating convex polynomial inequalities for mixed 0-–1 programs. J. Global Optim. 24, 311–332 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sturm J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  40. Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a Matlab software package for semidefinite programming. Optimization Methods and Software, vol. 11/12, pp. 545–581 (1999)

  43. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed integer conic quadratic programs. Manuscript, Georgia Institute of Technology (2007)

  44. Weingartner H.M.: Capital budgeting of interrelated projects: survey and synthesis. Manage. Sci. 12, 485–516 (1966)

    Article  Google Scholar 

  45. Yamashita M., Fujisawa K., Kojima M.: Implementation and evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0). Optim. Methods Softw. 18, 491–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Atamtürk.

Additional information

This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atamtürk, A., Narayanan, V. Conic mixed-integer rounding cuts. Math. Program. 122, 1–20 (2010). https://doi.org/10.1007/s10107-008-0239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0239-4

Keywords

Mathematics Subject Classification (2000)

Navigation