Skip to main content
Log in

On the structure of the solution set for the single facility location problem with average distances

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper analyzes continuous single facility location problems where the demand is randomly defined by a given probability distribution. For these types of problems that deal with the minimization of average distances, we obtain geometrical characterizations of the entire set of optimal solutions. For the important case of total polyhedrality on the plane we derive efficient algorithms with polynomially bounded complexity. We also develop a discretization scheme that provides \({\varepsilon}\) -approximate solutions of the original problem by solving simpler location problems with points as demand facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu V., Precupanu T.: Convexity and Optimization in Banach Spaces. Sijthoff & Noordhoff Publishers, Leiden (1975)

    Google Scholar 

  2. Bauer F.L., Stoer J., Witzgall C.: Absolute and monotonic norms. Numer. Math. 3, 257–264 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brimberg J., Wesolowsky G.O.: Note: facility location with closest rectangular distances. Nav. Res. Logist. 47, 77–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brimberg J., Wesolowsky G.O.: Locating facilities by minimax relative to closest points of demand areas. Comp. Oper. Res. 29, 625–636 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brimberg J., Wesolowsky G.O.: Minisum location with closest Euclidean distances. Ann. Oper. Res. 111, 151–165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carrizosa E., Muñoz M., Puerto J.: The Weber problem with regional demand. Eur. J. Oper. Res. 104, 358–365 (1998)

    Article  MATH  Google Scholar 

  7. Carrizosa E., Muñoz M., Puerto J.: Location and shape of a rectangular facility in \({\mathbb{R}^n}\) . Convexity properties. Math. Program. 83, 277–290 (1998)

    MATH  Google Scholar 

  8. Carrizosa E., Muñoz M., Puerto J.: A note on the optimal positioning of service units. Oper. Res. 46(1), 155–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carrizosa E., Conde E., Muñoz M., Puerto J.: The generalized Weber problem with expected distances. RAIRO Rech. oper. 29, 35–57 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Drezner Z.: Location of regional facilities. Nav. Res. Logist. Q. 33, 523–529 (1986)

    Article  MATH  Google Scholar 

  11. Drezner Z., Wesolowsky G.: Optimal location of a demand facility relative to area demand. Nav. Res. Logist. Q. 27, 199–206 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Durier R.: The general center location problem. Math. Oper. Res. 20, 400–414 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Durier R., Michelot C.: Geometrical properties of the Fermat-Weber problem. Eur. J. Oper. Res. 20, 332–343 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)

    MATH  Google Scholar 

  15. Ehrgott M.: Location of rescue helicopters in South Tyrol. Int. J. Ind. Eng. Theory Appl. Pract. 9, 16–22 (2002)

    Google Scholar 

  16. Garkavi A.L., Smatkov V.A.: On the Lamé point and its generalizations in a normed space. Math. USSR Sb. 24(2), 267–286 (1974)

    Article  Google Scholar 

  17. Giles, J.R.: Convex analysis with applications in differentiation of convex functions. Research Notes in Math. n. 58, Pitman Advanced Publishing Program (1982)

  18. Hakimi S.L.: Optimum location of switching centers and the absolute centers and medians of a graph. Oper. Res. 12, 450–459 (1964)

    Article  MATH  Google Scholar 

  19. Hiriart-Urruty J.B., Lemarechal C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)

    Google Scholar 

  20. Hooker J.N., Garfinkel R.S., Chen C.K.: Finite dominating sets for network location problems. Oper. Res. 39(1), 100–118 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horváth J.: Topological Vector Spaces and Distributions, vol. I. Addison-Wesley, Reading (1966)

    MATH  Google Scholar 

  22. Ioffe A.D., Levin V.L.: Subdifferentials of convex functions. Trans. Mosc. Math. Soc. 26, 1–72 (1972)

    MathSciNet  Google Scholar 

  23. Koshizuka T., Kurita O.: Approximate formulas of average distances associated with regions and applications to location problems. Math. Program. 52, 99–123 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Love R.F., Morris J.G., Wesolowsky G.O.: Facilities Location: Models and Methods. North Holland, New York (1988)

    MATH  Google Scholar 

  25. Luenberger D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  26. Nickel S., Puerto J.: Location Theory: A Unified Approach. Springer, Heidelberg (2005)

    Google Scholar 

  27. Nickel S., Puerto J., Rodríguez-Chía A.M.: An approach to location models involving sets as existing facilities. Math. Oper. Res. 28, 693–715 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Papini P.L.: Two new examples of sets without Centers. Top 13(2), 315–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Puerto J., Fernández F.R.: Geometrical properties of the symmetrical single facility location problem. J. Nonlinear Convex Anal. 1(3), 321–342 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Puerto J., Rodríguez-Chía A.M.: Robust positioning of service units. Stoch. Models 19(1), 125–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rockafellar R.T.: Convex Analysis. Princeton Press, Princeton (1970)

    MATH  Google Scholar 

  32. Sharir M., Agarwal P.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  33. Tapia R.A.: A characterization of inner product spaces. Proc. AMS 41, 569–574 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Valero-Franco C., Rodríguez-Chía A.M., Espejo-Miranda I.: The single facility location problem with average-distances. Top 16, 164–194 (2008)

    Article  MathSciNet  Google Scholar 

  35. Vickson R.G., Gerchak Y., Rotem D.: Optimal positioning of read/write head in mirrored disks. Locat. Sci. 3(2), 125–132 (1995)

    Article  MATH  Google Scholar 

  36. Wendell R., Hurter A.: Location theory, dominance and convexity. Oper. Res. 21, 314–320 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justo Puerto.

Additional information

Partially supported by Spanish Ministry of Education and Science grants numbers MTM2007-67433-C02-(01,02), HI2006-0123, and Junta de Andalucía, grants numbers P06-FQM-01364 and P06-FQM-01366.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puerto, J., Rodríguez-Chía, A.M. On the structure of the solution set for the single facility location problem with average distances. Math. Program. 128, 373–401 (2011). https://doi.org/10.1007/s10107-009-0308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0308-3

Mathematics Subject Classification (2000)

Navigation