Skip to main content
Log in

Convergence Rates of AFEM with H −1 Data

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper studies adaptive finite element methods (AFEMs), based on piecewise linear elements and newest vertex bisection, for solving second order elliptic equations with piecewise constant coefficients on a polygonal domain Ω⊂ℝ2. The main contribution is to build algorithms that hold for a general right-hand side fH −1(Ω). Prior work assumes almost exclusively that fL 2(Ω). New data indicators based on local H −1 norms are introduced, and then the AFEMs are based on a standard bulk chasing strategy (or Dörfler marking) combined with a procedure that adapts the mesh to reduce these new indicators. An analysis of our AFEM is given which establishes a contraction property and optimal convergence rates N s with 0<s≤1/2. In contrast to previous work, it is shown that it is not necessary to assume a compatible decay s<1/2 of the data estimator, but rather that this is automatically guaranteed by the approximability assumptions on the solution by adaptive meshes, without further assumptions on f; the borderline case s=1/2 yields an additional factor logN. Computable surrogates for the data indicators are introduced and shown to also yield optimal convergence rates N s with s≤1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška, A. Miller, A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Eng. 61(1), 1–40 (1987).

    Article  MATH  Google Scholar 

  2. P. Binev, W. Dahmen, R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97, 219–268 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Binev, R. DeVore, Fast computation in adaptive tree approximation, Numer. Math. 97, 193–217 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer Texts in Applied Mathematics, vol. 15 (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  5. J.M. Cascón, C. Kreuzer, R.H. Nochetto, K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46, 2524–2550 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33, 1106–1124 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Hardy, J.E. Littlewood, G. Pólya, Inequalities (Cambridge Univ. Press, Cambridge, 1951).

    Google Scholar 

  8. R.B. Kellogg, On the Poisson equation with intersecting interfaces, Appl. Anal. 4, 101–129 (1974/75).

    Article  MathSciNet  Google Scholar 

  9. W.F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Softw. 15, 326–347 (1989).

    Article  MATH  Google Scholar 

  10. P. Morin, R.H. Nochetto, K.G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38, 466–488 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Morin, R.H. Nochetto, K.G. Siebert, Local problems on stars: A posteriori error estimators, convergence, and performance, Math. Comput. 72, 1067–1097 (2003).

    MathSciNet  MATH  Google Scholar 

  12. R.H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comput. 64, 1–22 (1995).

    MathSciNet  MATH  Google Scholar 

  13. R.H. Nochetto, K.G. Siebert, A. Veeser, Theory of adaptive finite element methods: an introduction, in Multiscale, Nonlinear, and Adaptive Approximation, ed. by R. DeVore, A. Kunoth (Springer, Berlin, 2009), pp. 409–542.

    Chapter  Google Scholar 

  14. R. Stevenson, An optimal adaptive finite element method, SIAM J. Numer. Anal. 42, 2188–2217 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7, 245–269 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR N00014-09-1-0107; the AFOSR Contract FA95500910500; the ARO/DoD Contract W911NF-07-1-0185; the NSF Grants DMS-0915231, DMS-0807811, and DMS-1109325; the Agence Nationale de la Recherche (ANR) project ECHANGE (ANR-08-EMER-006); the excellence chair of the Fondation “Sciences Mathématiques de Paris” held by Ronald DeVore. This publication is based on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Cohen.

Additional information

Communicated by Wolfgang Dahmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A., DeVore, R. & Nochetto, R.H. Convergence Rates of AFEM with H −1 Data. Found Comput Math 12, 671–718 (2012). https://doi.org/10.1007/s10208-012-9120-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9120-1

Keywords

Mathematics Subject Classification

Navigation