Skip to main content
Log in

Abstract

Let M be a closed orientable manifold of dimension d and \(\mathcal{C}^*(M)\) be the usual cochain algebra on M with coefficients in a field k. The Hochschild cohomology of M, \(H\!H^*(\mathcal{C}^*(M);\mathcal{C}^*(M))\) is a graded commutative and associative algebra. The augmentation map \(\varepsilon: \mathcal{C}^*(M) \to{\textbf{\textit{k}}}\) induces a morphism of algebras \(I : H\!H^*(\mathcal{C}^*(M);\mathcal{C}^*(M)) \to{H\!H^*(\mathcal{C}^*(M);{\textbf{\textit{k}}})}\). In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent ideal and that the image of I is contained in the center of \(H\!H^*(\mathcal{C}^*(M);{\textbf{\textit{k}}})\), which is in general quite small. The algebra \(H\!H^*(\mathcal{C}^*(M);\mathcal{C}^*(M))\) is expected to be isomorphic to the loop homology constructed by Chas and Sullivan. Thus our results would be translated in terms of string homology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci., 42 (1956), 409–412.

    Google Scholar 

  2. D. Anick, Hopf algebras up to homotopy, J. Am. Math. Soc., 2 (1989), 417–453.

    Google Scholar 

  3. M. Chas and D. Sullivan, String topology, Ann. Math. (to appear) GT/9911159.

  4. R. Cohen and J. Jones, A homotopy theoretic realization of string topology, Math. Ann., 324 (2002), 773–798.

    Google Scholar 

  5. R. Cohen, J. D. S. Jones and J. Yan, The loop homology algebra of spheres and projective spaces, in: Categorical Decomposition Techniques in Algebraic Topology, Prog. Math. 215, Birkhäuser Verlag, Basel-Boston-Berlin (2004), 77–92.

  6. R. Cohen, Multiplicative properties of Atiyah duality, in preparation (2003).

  7. P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math., 29 (1975), 245–274.

    Google Scholar 

  8. Y. Félix, S. Halperin and J.-C. Thomas, Adams’s cobar construction, Trans. Am. Math. Soc., 329 (1992), 531–549.

    Google Scholar 

  9. Y. Félix, S. Halperin and J.-C. Thomas, Differential graded algebras in topology, in: Handbook of Algebraic Topology, Chapter 16, Elsevier, North-Holland-Amsterdam (1995), 829–865.

  10. Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Grad. Texts Math. 205, Springer-Verlag, New York (2000).

  11. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267–288.

    Google Scholar 

  12. J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math., 87 (1987), 403–423.

    Google Scholar 

  13. M. Vigué-Poirrier, Homologie de Hochschild et homologie cyclique des algèbres différentielles graduées, in: Astérisque: International Conference on Homotopy Theory (Marseille-Luminy-1988), 191 (1990), 255–267.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yves Felix, Jean-Claude Thomas or Micheline Vigué-Poirrier.

About this article

Cite this article

Felix, Y., Thomas, JC. & Vigué-Poirrier, M. The Hochschild cohomology of a closed manifold. Publ. Math., Inst. Hautes Étud. Sci. 99, 235–252 (2004). https://doi.org/10.1007/s10240-004-0021-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-004-0021-y

Keywords

Navigation