Skip to main content
Log in

Abstract

We introduce a family of conditions on a simplicial complex that we call local k-largeness (k≥6 is an integer). They are simply stated, combinatorial and easily checkable. One of our themes is that local 6-largeness is a good analogue of the non-positive curvature: locally 6-large spaces have many properties similar to non-positively curved ones. However, local 6-largeness neither implies nor is implied by non-positive curvature of the standard metric. One can think of these results as a higher dimensional version of small cancellation theory. On the other hand, we show that k-largeness implies non-positive curvature if k is sufficiently large. We also show that locally k-large spaces exist in every dimension. We use this to answer questions raised by D. Burago, M. Gromov and I. Leary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Alonso and M. Bridson, Semihyperbolic groups, Proc. Lond. Math. Soc., III. Ser., 70 (1995), 56–114.

  2. M. Bestvina, Questions in Geometric Group Theory, http://www.math.utah.edu/∼bestvina.

  3. M. Bridson, On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc., 127 (1999), no. 7, 2143–2146.

  4. M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissenschaften 319, Springer, Berlin (1999).

  5. D. Burago, Hard balls gas and Alexandrov spaces of curvature bounded above, Doc. Math., Extra Vol. ICM II (1998), 289–298.

  6. D. Burago, S. Ferleger, B. Kleiner and A. Kononenko, Gluing copies of a 3-dimensional polyhedron to obtain a closed nonpositively curved pseudomanifold, Proc. Amer. Math. Soc., 129 (2001), no. 5, 1493–1498.

    Google Scholar 

  7. R. Charney and M. Davis, Singular metrics of nonpositive curvature on branched covers of Riemannian manifolds, Amer. J. Math., 115 (1993), no. 5, 929–1009.

    Google Scholar 

  8. G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamb., 25 (1961), 71–76.

    Google Scholar 

  9. D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston, Word Processing in Groups, Jones and Barlett, Boston, MA (1992).

  10. E. Ghys and P. de la Harpe (eds.), Sur les Groupes Hyperboliques d’apres Mikhael Gromov, Progr. Math., vol. 83, Birkhäuser, Boston, MA (1990).

  11. C. McA. Gordon, D. D. Long and A. W. Reid, Surface subgroups of Coxeter and Artin groups, J. Pure Appl. Algebra, 189 (2004), 135–148.

    Google Scholar 

  12. M. Goresky, R. MacPherson, Intersection homology theory, Topology, 19 (1980), no. 2, 135–162.

  13. M. Gromov, Asymptotic invariants of infinite groups, Geometric Group Theory, G. Niblo and M. Roller (eds.), LMS Lecture Notes Series 182, vol. 2, Cambridge Univ. Press (1993).

  14. M. Gromov, Hyperbolic groups, Essays in Group Theory, S. Gersten (ed.), Springer, MSRI Publ. 8 (1987), 75–263.

  15. F. Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71, 2003.

  16. T. Januszkiewicz and J. Świątkowski, Hyperbolic Coxeter groups of large dimension, Comment. Math. Helv., 78 (2003), 555–583.

    Google Scholar 

  17. T. Januszkiewicz and J. Świątkowski, Filling invariants in systolic complexes and groups, submitted, 2005.

  18. T. Januszkiewicz and J. Świątkowski, Nonpositively curved developments of billiards, preprint, 2006.

  19. D. Meintrup and T. Schick, A model for the universal space for proper actions of a hyperbolic group, New York J. Math., 8 (2002), 1–7.

    Google Scholar 

  20. I. Leary, A metric Kan–Thurston theorem, in preparation.

  21. I. Leary and B. Nucinkis, Every CW-complex is a classifying space for proper bundles, Topology, 40 (2001), 539–550.

    Google Scholar 

  22. R. Lyndon and P. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer, Berlin (1977).

  23. J. Świątkowski, Regular path systems and (bi)automatic groups, Geom. Dedicata, 118 (2006), 23–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tadeusz Januszkiewicz or Jacek Świątkowski.

About this article

Cite this article

Januszkiewicz, T., Świątkowski, J. Simplicial nonpositive curvature. Publ.math.IHES 104, 1–85 (2006). https://doi.org/10.1007/s10240-006-0038-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-006-0038-5

Keywords

Navigation