Skip to main content
Log in

Invariant subspaces for operators in a general II1-factor

  • Published:
Publications mathématiques Aims and scope Submit manuscript

Abstract

Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace \({\mathcal{K}}={\mathcal{K}}_{\mathrm{T}}(B)\) affiliated with ℳ, such that the Brown measure of \(\mathrm {T}|_{{\mathcal{K}}}\) is concentrated on B and the Brown measure of \(\mathrm{P}_{{\mathcal{K}}^{\bot}}\mathrm{T}|_{{\mathcal{K}}^{\bot}}\) is concentrated on ℂ∖B. Moreover, \({\mathcal{K}}\) is T-hyperinvariant and the trace of \(\mathrm{P}_{\mathcal{K}}\) is equal to μ T(B). In particular, if T∈ℳ has a Brown measure which is not concentrated on a singleton, then there exists a non-trivial, closed, T-hyperinvariant subspace. Furthermore, it is shown that for every T∈ℳ the limit \(A:=\lim _{n\rightarrow\infty}[(\mathrm{T}^{n})^{*}\mathrm{T}^{n}]^{\frac{1}{2n}}\) exists in the strong operator topology, and the projection onto \({\mathcal{K}}_{\mathrm{T}}(\overline{B(0,r)})\) is equal to 1[0,r](A), for every r>0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Biane and F. Lehner, Computation of some examples of Brown’s spectral measure in free probability, Colloq. Math., 90 (2001), 181–211.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. G. Brown, Lidskii’s theorem in the type II case, in Geometric Methods in Operator Algebras (Kyoto 1983), pp. 1–35, Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986.

    Google Scholar 

  3. A. Connes, Classification of injective factors, Ann. Math., 104 (1976), 73–115.

    Article  MathSciNet  Google Scholar 

  4. K. Dykema, Hyperinvariant subspaces for some B-circular operators, Math. Ann. 333(3) (2005), 485–523.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Dykema and U. Haagerup, Invariant subspaces of Voiculescu’s circular operator, Geom. Funct. Anal., 11 (2001), 693–741.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Dykema and U. Haagerup, DT-operators and decomposability of Voiculescu’s circular operator, Am. J. Math., 126 (2004), 121–189.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Dykema and U. Haagerup, Invariant subspaces of the quasinilpotent DT-operator, J. Funct. Anal., 209 (2004), 332–366.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Fack and H. Kosaki, Generalized s-numbers of τ-measurable operators, Pac. J. Math., 123 (1986), 269–300.

    MATH  MathSciNet  Google Scholar 

  9. B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. Math., 55 (1952), 520–530.

    Article  MathSciNet  Google Scholar 

  10. G. B. Folland, Real Analysis, Modern Techniques and their Applications, Wiley, New York, 1984.

    MATH  Google Scholar 

  11. U. Haagerup, Spectral decomposition of all operators in a II1-factor which is embeddable in R ω, Unpublished lecture notes, MSRI, 2001.

  12. U. Haagerup, Random matrices, free probability and the invariant subspace problem relative to a von Neumann algebra, in Proceedings of the International Congress of Mathematics, vol. 1, pp. 273–290, 2002.

  13. U. Haagerup and F. Larsen, Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras, J. Funct. Anal., 176 (2000), 331–367.

    Article  MATH  MathSciNet  Google Scholar 

  14. U. Haagerup and H. Schultz, Brown measures of unbounded operators affiliated with a finite von Neumann algebra, Math. Scand., 100 (2007), 209–263.

    MATH  MathSciNet  Google Scholar 

  15. U. Haagerup and S. Thorbjørnsen, A new application of random matrices: Ext(C *red (F 2)) is not a group, Ann. Math., 162 (2005), 711–775.

    Article  MATH  Google Scholar 

  16. U. Haagerup and C. Winsløw, The Effros-Maréchal topology in the space of von Neumann algebras, II, J. Funct. Anal., 171 (2000), 401–431.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I. Academic Press, New York, 1983.

    Google Scholar 

  18. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. II. Academic Press, Orlando, 1986.

    Google Scholar 

  19. N. J. Kalton, Analytic functions in non-locally convex spaces and applications, Stud. Math., 83 (1986), 275–303.

    MathSciNet  Google Scholar 

  20. S. Lang, Real and Functional Analysis, 3rd edn., Graduate Texts in Mathematics, vol. 142, Springer, New York, 1993.

    MATH  Google Scholar 

  21. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon, New York, 2000.

    MATH  Google Scholar 

  22. W. Rudin, Real and Complex Analysis, 3rd edn., McGraw-Hill, New York, 1987.

    MATH  Google Scholar 

  23. D. Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math., 500 (1998), 191–212.

    MATH  MathSciNet  Google Scholar 

  24. P. Sniady and R. Speicher, Continuous families of invariant subspaces for R-diagonal operators, Invent. Math., 146 (2001), 329–363.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Turpin and L. Waelbroeck, Intégration et fonctions holomorphes dans les espaces localement pseudo-convexes, C.R. Acad. Sci. Paris Sér. A-B, 267 (1968), 160–162.

    MATH  MathSciNet  Google Scholar 

  26. D. Voiculescu, Circular and semicircular systems and free product factors, in Operator Algebras, Unitary Representations, Algebras, and Invariant Theory (Paris, 1989), pp. 45–60, Progr. Math., vol. 92, Birkhäuser, Boston, 1990.

    Google Scholar 

  27. D. Voiculescu, K. Dykema, and A. Nica, Free Random Variables. CRM Monograph Series, vol. 1, American Mathematical Society, Providence, 1992.

    MATH  Google Scholar 

  28. L. Waelbroeck, Topological Vector Spaces and Algebras. Lecture Notes in Mathematics, vol. 230, Springer, Berlin, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe Haagerup.

Additional information

Supported by The Danish National Research Foundation.

About this article

Cite this article

Haagerup, U., Schultz, H. Invariant subspaces for operators in a general II1-factor. Publ.math.IHES 109, 19–111 (2009). https://doi.org/10.1007/s10240-009-0018-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-009-0018-7

Keywords

Navigation