Skip to main content
Log in

Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles

  • Published:
Publications mathématiques Aims and scope Submit manuscript

Abstract

In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic cycles for smooth, meaning C , parametrized families {g t t∈ℝ} of surface diffeomorphisms. We assume that a quadratic tangency q is formed at t=0 between the stable and unstable lines of two periodic points, not belonging to the same orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other with positive relative speed as the parameter evolves, starting at t=0 and the point q. We also assume that, in some neighborhood W of K and of the orbit of tangency o(q), the maximal invariant set for g 0=g t=0 is Ko(q), where o(q) denotes the orbit of q for g 0. We then prove that, when the Hausdorff dimension HD(K) is bigger than one, but not much bigger (see (H.4) in Section 1.2 for a precise statement), then for most t, |t| small, g t is a non-uniformly hyperbolic horseshoe in W, and so g t has no attractors in W. Most t, and thus most g t , here means that t is taken in a set of parameter values with Lebesgue density one at t=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Benedicks and L. Carleson, The dynamics of the Hénon map, Ann. Math., 133 (1991), 73–169.

    Article  MathSciNet  Google Scholar 

  2. C. Bonatti, L. Diaz, and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopedia of Math. Sciences, vol. 102, Springer, Berlin, 2004.

    Google Scholar 

  3. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181–202.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 15 (1998), 539–579.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. L. Cartwright and J. E. Littlewood, On nonlinear differential equations of the second order I, J. Lond. Math. Soc., 29 (1945), 180–189.

    Article  MathSciNet  Google Scholar 

  6. M. Levi, Qualitative analysis of the periodically forced relaxation oscillations, Mem. Am. Math. Soc., 32 (1981), 244.

    Google Scholar 

  7. L. Mora and M. Viana, Abundance of strange attractors, Acta Math., 171 (1993), 1–71.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. G. Moreira, J. Palis, and M. Viana, Homoclinic tangencies and fractal invariants in arbitrary dimension, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 475–480.

    MATH  MathSciNet  Google Scholar 

  9. C. G. Moreira and J.-C. Yoccoz, Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. Math., 154 (2001), 45–96. Corrigendum in Ann. Math., 154 (2001), 527.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. I.H.E.S., 50 (1979), 101–151.

    MATH  MathSciNet  Google Scholar 

  11. S. Newhouse and J. Palis, Cycles and bifurcation theory, Astérisque, 31 (1976), 44–140.

    MATH  Google Scholar 

  12. J. Palis, A global view of Dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, 261 (2000), 335–347. Géométrie complexe et systèmes dynamiques (Orsay, 1995).

    MathSciNet  Google Scholar 

  13. J. Palis, A global perspective for non-conservative dynamics, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 22 (2005), 485–507.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Palis, Open questions leading to a global perspective in dynamics, Nonlinearity, 21 (2008), 37–43.

    Article  MathSciNet  Google Scholar 

  15. J. Palis and F. Takens, Hyperbolic and the creation of homoclinic orbits, Ann. Math., 125 (1987), 337–374.

    Article  MathSciNet  Google Scholar 

  16. J. Palis and J.-C. Yoccoz, Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension, Acta Math., 172 (1994), 91–136.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Palis and J.-C. Yoccoz, Implicit Formalism for Affine-like Map and Parabolic Composition, Global Analysis of Dynamical Systems, pp. 67–87, Institut of Phys., IOP, London, 2001.

    Google Scholar 

  18. J. Palis and J.-C. Yoccoz, Fers à cheval non uniformément hyperboliques engendrés par une bifurcation homocline et densité nulle des attracteurs, C. R. Acad. Sci. Paris, 333 (2001), 867–871.

    MATH  MathSciNet  Google Scholar 

  19. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, vol. III, pp. 189, Gauthier-Villars, Paris, 1899.

    MATH  Google Scholar 

  20. D. Ruelle, A measure associated with Axiom A attractors, Am. J. Math., 98 (1976), 619–654.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Smale, Differentiable dynamical systems, Bull. Am. Math. Soc., 73 (1967), 747–817.

    Article  MathSciNet  Google Scholar 

  22. Ya. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surv., 27 (1972), 21–69.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Yoccoz.

Additional information

Partially support by CNPq and FAPERJ, Brazil.

About this article

Cite this article

Palis, J., Yoccoz, JC. Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles. Publ.math.IHES 110, 1–217 (2009). https://doi.org/10.1007/s10240-009-0023-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-009-0023-x

Keywords

Navigation