Skip to main content
Log in

Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the S 2 target in all homotopy classes and for the critical equivariant SO(4) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Atiyah, V. G. Drinfield, N. Hitchin, and Y. I. Manin, Construction of instantons, Phys. Lett. A, 65 (1978), 185–187.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. A. Belavin and A. M. Polyakov, Metastable states of two-dimensional isotropic ferromagnets, JETP Lett., 22 (1975), 245–247 (Russian).

    Google Scholar 

  3. A. A. Belavin, A. M. Polyakov, A. S. Schwarz, and Y. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equation, Phys. Lett. B, 59 (1975), 85.

    Article  MathSciNet  Google Scholar 

  4. P. Bizon, T. Chmaj, and Z. Tabor, Formation of singularities for equivariant (2+1)-dimensional wave maps into the 2-sphere, Nonlinearity, 14 (2001), 1041–1053.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Bizon, Y. N. Ovchinnikov, and I. M. Sigal, Collapse of an instanton, Nonlinearity, 17 (2004), 1179–1191.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. B. Bogomol’nyi, The stability of classical solutions, Sov. J. Nucl. Phys., 24 (1976), 449–454 (Russian).

    MathSciNet  Google Scholar 

  7. T. Cazenave, J. Shatah, and S. Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields, Ann. Inst. Henri Poincaré, A , 68 (1998), 315–349.

    MathSciNet  MATH  Google Scholar 

  8. D. Christodoulou and A. S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Commun. Pure Appl. Math., 46 (1993), 1041–1091.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Côte, Instability of nonconstant harmonic maps for the (1+2)-dimensional equivariant wave map system, Int. Math. Res. Not., 2005 (2005), 3525–3549.

    Article  MATH  Google Scholar 

  10. R. Côte, C. E. Kenig, and F. Merle, Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system, Commun. Math. Phys., 284 (2008), 203–225.

    Article  MATH  Google Scholar 

  11. S. K. Donaldson and P. B. Kronheimer, Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990.

    MATH  Google Scholar 

  12. J. Eells and L. Lemaire, Two Reports on Harmonic Maps, World Scientific Publishing Co., Inc., River Edge, 1995.

    Book  MATH  Google Scholar 

  13. F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphére, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 519–524.

    MATH  Google Scholar 

  14. J. Isenberg and S. L. Liebling, Singularity formation in 2+1 wave maps, J. Math. Phys., 43 (2002), 678–683.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Kavian and F. B. Weissler, Finite energy self-similar solutions of a nonlinear wave equation, Commun. Partial Differ. Equ., 15 (1990), 1381–1420.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147–212.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Klainerman and M. Machedon, On the regularity properties of a model problem related to wave maps, Duke Math. J., 87 (1997), 553–589.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Klainerman and Z. Selberg, Remark on the optimal regularity for equations of wave maps type, Commun. Partial Differ. Equ., 22 (1997), 901–918.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Krieger and W. Schlag, Concentration compactness for critical wave maps, preprint, arXiv:0908.2474.

  20. J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math., 171 (2008), 543–615.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for the critical Yang-Mills problem, Adv. Math., 221 (2009), 1445–1521.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Lemou, F. Mehats, and P. Raphaël, Stable self similar blow up solutions to the relativistic gravitational Vlasov-Poisson system, J. Am. Math. Soc., 21 (2008), 1019–1063.

    Article  MATH  Google Scholar 

  23. N. Manton and P. Sutcliffe, Topological Solitons, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  24. Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the L2-critical generalized KdV equation, J. Am. Math. Soc., 15 (2002), 617–664.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Merle and P. Raphaël, Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal., 13 (2003), 591–642.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Merle and P. Raphaël, On universality of blow up profile for L 2 critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565–672.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Merle and P. Raphaël, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157–222.

    Article  MATH  Google Scholar 

  28. F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Commun. Math. Phys., 253 (2005), 675–704.

    Article  MATH  Google Scholar 

  29. F. Merle and P. Raphaël, Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Am. Math. Soc., 19 (2006), 37–90.

    Article  MATH  Google Scholar 

  30. C. B. Morrey Jr., The problem of Plateau on a Riemannian manifold, Ann. Math., 49 (1948), 807–851.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605–673.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Piette and W. J. Zakrzewski, Shrinking of solitons in the (2+1)-dimensional S 2 sigma model, Nonlinearity, 9 (1996), 897–910.

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577–609.

    Article  MathSciNet  MATH  Google Scholar 

  34. I. Rodnianski and J. Sterbenz, On the formation of singularities in the critical O(3) σ-model, Ann. Math., to appear

  35. J. Shatah, Weak solutions and development of singularities of the SU(2) σ-model, Commun. Pure Appl. Math., 41 (1988), 459–469.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Shatah and A. S. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Commun. Pure Appl. Math., 47 (1994), 719–754.

    Article  MathSciNet  MATH  Google Scholar 

  37. I. M. Sigal and Y. N. Ovchinnikov, On collapse of wave maps, preprint, arXiv:0909.3085.

  38. J. Sterbenz and D. Tataru, Energy dispersed arge data wave maps in 2+1 dimensions, preprint, arXiv:0906.3384.

  39. J. Sterbenz and D. Tataru, Regularity of wave-maps in dimension 2+1, preprint, arXiv:0907.3148.

  40. M. Struwe, Equivariant wave maps in two space dimensions. Dedicated to the memory of Jürgen K. Moser, Commun. Pure Appl. Math., 56 (2003), 815–823.

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Tao, Global regularity of wave maps. II. Small energy in two dimensions, Commun. Math. Phys., 224 (2001), 443–544.

    Article  MATH  Google Scholar 

  42. T. Tao, Geometric renormalization of large energy wave maps.

  43. T. Tao, Global regularity of wave maps III–VII, preprints, arXiv:0908.0776.

  44. D. Tataru, On global existence and scattering for the wave maps equation, Am. J. Math., 123 (2001), 37–77.

    Article  MathSciNet  MATH  Google Scholar 

  45. K. Uhlenbeck, Removable singularities in Yang-Mills fields, Commun. Math. Phys., 83 (1982), 11–29.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Ward, Slowly moving lumps in the C P1 model in (2+1) dimensions, Phys. Lett. B, 158 (1985), 424–428.

    Article  MathSciNet  Google Scholar 

  47. E. Witten, Some exact multipseudoparticle solutions of the classical Yang-Mills theory, Phys. Rev. Lett., 38 (1977), 121–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Raphaël.

About this article

Cite this article

Raphaël, P., Rodnianski, I. Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publ.math.IHES 115, 1–122 (2012). https://doi.org/10.1007/s10240-011-0037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-011-0037-z

Keywords

Navigation