Skip to main content
Log in

An investigation of an Emden-Fowler equation from thin film flow

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A third-order ordinary differential equation (ODE) for thin film flow with both Neumann and Dirichlet boundary conditions is transformed into a second-order nonlinear ODE with Dirichlet boundary conditions. Numerical solutions of the nonlinear second-order ODE are investigated using finite difference schemes. A finite difference formulation to an Emden-Fowler representation of the second-order nonlinear ODE is shown to converge faster than a finite difference formulation of the standard form of the second-order nonlinear ODE. Both finite difference schemes satisfy the von Neumann stability criteria. When mapping the numerical solution of the second-order ODE back to the variables of the original third-order ODE we recover the position of the contact line. A nonlinear relationship between the position of the contact line and physical parameters is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenspan H.P.: On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84, 125–143 (1978)

    Article  MATH  Google Scholar 

  2. Myers T.G.: Thin films with high surface tension. SIAM Rev. 40, 441–462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almgren R.: Singularity formation in Hele-Shaw bubbles. Phys. Fluids 8, 344–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Constantin P., Dupont T.F., Goldstein R.E., et al.: Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E 47, 4169–4181 (1993)

    Article  MathSciNet  Google Scholar 

  5. Dupont T.F., Goldstein R.E., Kadanoff L.P., et al.: Finite-time singularity formation in Hele-Shaw systems. Phys. Rev. E 47, 4182–4196 (1993)

    Article  MathSciNet  Google Scholar 

  6. Goldstein R.E., Pesci A.I., Shelley M.J.: Instabilities and singularities in Hele-Shaw flow. Phys. Fluids 10, 2701–2723, (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pesci A.I., Goldstein R.E., Shelley M.J.: Domain of convergence of perturbative solutions for Hele-Shaw flow near interface collapse. Phys. Fluids 11, 2809–2811 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Greenspan H.P., McCay B.M.: On the wetting of a surface by a very viscous fluid. Stud. Appl. Math. 64, 95–112 (1981)

    MathSciNet  MATH  Google Scholar 

  9. Hocking L.M.: Sliding and spreading of thin two dimensional drops. Q. J. Mech. Appl. Math. 34, 37–55 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lacey A.A.: The motion with slip of a thin viscous droplet over a solid surface. Stud. Appl. Math. 67, 217–230 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Tanner L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 1473–1484 (1979)

    Article  Google Scholar 

  12. Howes F.A.: The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows. SIAM J. Appl. Math. 43, 993–1004 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Troy W.C.: Solutions of third-order differential equations relevant to draining and coating flows. SIAM J. Math. Anal. 24, 155–171 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tuck E.O., Schwartz L.W.: Numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Review 32, 453–469 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Momoniat E.: Numerical investigation of a third-order ODE from thin film flow, Meccanica 46, 313–323, (2011)

    Article  MathSciNet  Google Scholar 

  16. Momoniat E., Selway T.A., Jina K.: Analysis of adomian decomposition applied to a third-order ordinary differential equation from thin film flow. Nonl. Anal. Ser. A: Theory, Meth. & Appl. 66, 2315–2324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Momoniat E.: Symmetries, first integrals and phase planes of a third order ordinary differential equation from thin film flow. Math. Comp. Mod. 49, 215–225 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ford W.F.: A third-order differential equation. SIAM Review 34, 121–122 (1992)

    Article  Google Scholar 

  19. Duffy B.R., Wilson S.K.: A third-order differential equation arising in thin-film flows and relevant to Tanner’s Law. Appl. Math. Lett. 10, 63–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. King J.R.: Two generalisations of the thin film equation. Math. Comp. Mod. 34, 737–756 (2001)

    Article  MATH  Google Scholar 

  21. Klamkin M.S.: On the transformation of a class of boundary problems into initial value problems for ordinary differential equations. SIAM Review 4, 43–47 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klamkin M.S.: Transformation of boundary value problems into initial value problems. J. Math. Anal. Applic. 32, 308–330 (1970)

    Article  MATH  Google Scholar 

  23. Na T.Y.: Transforming boundary conditions into initial conditions for ordinary differential equations. SIAM Review 9, 204–210 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Na T.Y.: Further extensions on transforming from boundary value to initial value problems. SIAM Review 10, 85–87 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fazio R.: A similarity approach to the numerical solution of free boundary problems. SIAM Review 40, 616–635 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bertozzi A.L.: The mathematics of moving contact lines in thin liquid films. Not. AMS 45, 689–697 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Mellin C.M., Mahomed F.M., Leach P.G.L.: Solution of generalized Emden-Fowler equations with two symmetries. Int. J. Non-linear Mech. 29, 529–538 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Polyanin A. D., Zaitsev V. F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press Inc., Boca Raton, Florida (1995)

    MATH  Google Scholar 

  29. Lima P.M.: Numerical methods and asymptotic error expansions for the Emden-Fowler equations. J. Comp. Appl. Math. 70, 245–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lima P.M., Oliveira A.M.: Numerical solution of a singular boundary value problem for a generalized Emden-Fowler equation. Appl. Num. Math. 45, 389–409 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chowdhury M.S.H., Hashim I.: Solutions of Emden-Fowler equations by homotopy-perturbation method. Nonl. Anal. Ser. B: Real World Appl. 10, 104–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Conte S.D., deBoor C.: Elementary Numerical Analysis, McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  33. Middleman S.: Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press (1995)

  34. Myers T.G., Charpin J.P.F.: The effect of the Coriolis force on axisymmetric rotating thin film flows. Int. J. Non-linear Mech. 36, 629–635 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Momoniat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momoniat, E. An investigation of an Emden-Fowler equation from thin film flow. Acta Mech Sin 28, 300–307 (2012). https://doi.org/10.1007/s10409-012-0007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0007-9

Keywords

Navigation