Skip to main content
Log in

Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrödinger Equation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In the present paper we compare the two methodologies for the development of exponentially and trigonometrically fitted methods. One is based on the exact integration of the functions of the form: {1,x,x 2,…,x p,exp (±wx),xexp (±wx),…,x mexp (±w x)} and the second is based on the exact integration of the functions of the form: {1,x,x 2,…,x p,exp (±wx),exp (±2wx),…,exp (±mwx)}. The above functions are used in order to improve the efficiency of the classical methods of any kind (i.e. the method (5) with constant coefficients) for the numerical solution of ordinary differential equations of the form of the Schrödinger equation. We mention here that the above sets of exponential functions are the two most common sets of exponential functions for the development of the special methods for the efficient solution of the Schrödinger equation. It is first time in the literature in which the efficiency of the above sets of functions are studied and compared together for the approximate solution of the Schrödinger equation. We present the error analysis of the above two approaches for the numerical solution of the one-dimensional Schrödinger equation. Finally, numerical results for the resonance problem of the radial Schrödinger equation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceto, L., Pandolfi, R., Trigiante, D.: Stability analysis of linear multistep methods via polynomial type variation. JNAIAM J. Numer. Anal. Ind. Appl. Math. 2(1–2), 1–9 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Anastassi, Z.A., Simos, T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anastassi, Z.A., Simos, T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Avdelas, G., Simos, T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999)

    Article  MathSciNet  Google Scholar 

  5. Avdelas, G., Konguetsof, A., Simos, T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Avdelas, G., Konguetsof, A., Simos, T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Avdelas, G., Kefalidis, E., Simos, T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chawla, M.M.: Unconditionally stable Noumerov-type methods for second order differential equations. BIT 23, 541–542 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Corless, R.M., Shakoori, A., Aruliah, D.A., Gonzalez-Vega, L.: Barycentric Hermite interpolants for event location in initial-value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 1–16 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Corwin, S.P., Thompson, S., White, S.M.: Solving ODEs and DDEs with impulses. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 139–149 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Dewar, M.: Embedding a general-purpose numerical library in an interactive environment. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 17–26 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Enright, W.H.: On the use of ‘arc length’ and ‘defect’ for mesh selection for differential equations. Comput. Lett. 1(2), 47–52 (2005)

    Article  MathSciNet  Google Scholar 

  13. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)

    MATH  Google Scholar 

  14. Ixaru, L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  15. Ixaru, L.Gr., Rizea, M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  16. Ixaru, L.Gr., Rizea, M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  MATH  Google Scholar 

  17. Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting. Series on Mathematics and Its Applications, vol. 568. Kluwer Academic, Norwell (2004)

    MATH  Google Scholar 

  18. Kalogiratou, Z., Simos, T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kalogiratou, Z., Simos, T.E.: Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232

  20. Kalogiratou, Z., Monovasilis, T., Simos, T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kierzenka, J., Shampine, L.F.: A BVP solver that controls residual and error. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 27–41 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Knapp, R.: A method of lines framework in Mathematica. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 43–59 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Konguetsof, A., Simos, T.E.: On the construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Comput. Methods Sci. Eng. 1, 143–165 (2001)

    MATH  Google Scholar 

  24. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lipsman, R.L., Osborn, J.E., Rosenberg, J.M.: The SCHOL project at the University of Maryland: using mathematical software in the teaching of sophomore differential equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 81–103 (2008)

    MathSciNet  Google Scholar 

  26. Monovasilis, T., Kalogiratou, Z., Simos, T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Monovasilis, T., Kalogiratou, Z., Simos, T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nedialkov, N.S., Pryce, J.D.: Solving differential algebraic equations by Taylor series (III): the DAETS code. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 61–80 (2008)

    MATH  MathSciNet  Google Scholar 

  29. Psihoyios, G.: A Block Implicit Advanced Step-point (BIAS) algorithm for stiff differential systems. Comput. Lett. 2(1–2), 51–58 (2006)

    Article  Google Scholar 

  30. Psihoyios, G., Simos, T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Psihoyios, G., Simos, T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Raptis, A.D.: On the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 24, 1–4 (1981)

    Article  Google Scholar 

  33. Raptis, A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Article  MathSciNet  Google Scholar 

  34. Raptis, A.D.: Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)

    MATH  MathSciNet  Google Scholar 

  35. Raptis, A.D., Allison, A.C.: Exponential—fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  36. Raptis, A.D., Simos, T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sakas, D.P., Simos, T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Simos, T.E.: Numerical solution of ordinary differential equations with periodical solution. Doctoral Dissertation, National Technical University of Athens, Greece (1990) (in Greek)

  39. Simos, T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)

    Article  MATH  Google Scholar 

  40. Simos, T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Simos, T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. Simos, T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  43. Simos, T.E.: Atomic structure computations. In: Hinchliffe, A. (ed.) Chemical Modelling: Applications and Theory, pp. 38–142. Royal Soc. Chem., London (2000)

    Google Scholar 

  44. Simos, T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems. In: Chemical Modelling: Application and Theory, vol. 2, pp. 170–270. Royal Soc. Chem., London (2002)

    Google Scholar 

  45. Simos, T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  46. Simos, T.E.: Numerical methods in chemistry. In: Chemical Modelling: Application and Theory, vol. 3, pp. 271–378. Royal Soc. Chem., London (2004)

    Google Scholar 

  47. Simos, T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 7–26 (2004)

    MathSciNet  Google Scholar 

  48. Simos, T.E.: Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. Simos, T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Simos, T.E.: Numerical methods in chemistry. In: Chemical Modelling: Application and Theory, vol. 4, pp. 161–244. Royal Soc. Chem., London (2006)

    Google Scholar 

  51. Simos, T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Mod. Phys. C 18(3), 315–328 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Simos, T.E.: Numerical methods in chemistry. In: Chemical Modelling: Application and Theory, vol. 5, pp. 350–487. Royal Soc. Chem., London (2008)

    Google Scholar 

  53. Simos, T.E.: In: Numerical methods in chemistry. Chemical Modelling: Application and Theory, vol. 6. Royal Soc. Chem., London (2009, to appear)

  54. Simos, T.E., Vigo-Aguiar, J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  55. Simos, T.E., Vigo-Aguiar, J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  MathSciNet  Google Scholar 

  56. Simos, T.E., Williams, P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  MATH  Google Scholar 

  57. Simos, T.E., Williams, P.S.: A new Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)

    MATH  MathSciNet  Google Scholar 

  58. Sofroniou, M., Spaletta, G.: Extrapolation methods in Mathematica. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 105–121 (2008)

    MATH  MathSciNet  Google Scholar 

  59. Spiteri, R.J., Ter, T.-P.: pythNon: a PSE for the numerical solution of nonlinear algebraic equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 123–137 (2008)

    MATH  MathSciNet  Google Scholar 

  60. Tselios, K., Simos, T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  61. Tselios, K., Simos, T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  62. Vigo-Aguiar, J., Simos, T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001)

    Article  MathSciNet  Google Scholar 

  63. Vigo-Aguiar, J., Simos, T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  64. Weckesser, W.: VFGEN: A code generation tool. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 151–165 (2008)

    MATH  MathSciNet  Google Scholar 

  65. Wittkopf, A.: Automatic code generation and optimization in Maple. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 167–180 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

Highly Cited Researcher in Mathematics (ISI), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences Corresponding Member of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simos, T.E. Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrödinger Equation. Acta Appl Math 110, 1331–1352 (2010). https://doi.org/10.1007/s10440-009-9513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9513-6

Keywords

Mathematics Subject Classification (2000)

Navigation