Skip to main content
Log in

Approximation of parabolic PDEs on spheres using spherical basis functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we investigate the approximation of a class of parabolic partial differential equations on the unit spheres S n⊂Rn+1 using spherical basis functions. Error estimates in the Sobolev norm are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cui and W. Freeden, Equidistribution on the sphere, SIAM J. Sci. Statist. Comput. 18 (1997) 595–609.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere with Applications to Geomathematics (Oxford Univ. Press, Oxford, 1998).

    MATH  Google Scholar 

  3. J. Göttelmann, A spline collocation scheme for the spherical shallow water equations, Preprint.

  4. S. Hubbert and T.M. Morton, L p error estimates for radial basis function interpolation on the sphere, Preprint.

  5. K. Jetter, J. Stockler and J.D. Ward, Error estimates for scattered data interpolation on spheres, Math. Comp. 68 (1999) 733–747.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Levesley, Z. Lou and X. Sun, Norm estimates of interpolation matrices and their inverses associated with strictly positive definite functions, Proc. Amer. Math. Soc. 127 (1999) 2127–2137.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. I (Springer, New York, 1972).

    Google Scholar 

  8. W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 52 (Springer, Berlin, 1966).

    MATH  Google Scholar 

  9. T.M. Morton and M. Neamtu, Error bounds for solving pseudodifferential equations on spheres by collocation with zonal kernels, J. Approx. Theory 114(2) (2002) 242–268.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17 (Springer, Berlin, 1966).

    MATH  Google Scholar 

  11. R. Nagle, E. Saff and A. Snider, Fundamentals of Differential Equations (Addison-Wesley, New York, 2000).

    MATH  Google Scholar 

  12. F.J. Narcowich, N. Sivakumar and J.D. Ward, Stability results for scattered-data interpolation on Euclidean spheres, Adv. Comput. Math. 8 (1998) 137–163.

    Article  MATH  MathSciNet  Google Scholar 

  13. F.J. Narcowich and J.D. Ward, Scattered-data interpolation on spheres: Error estimates and locally supported basis functions, SIAM J. Math. Anal. 33(6) (2002) 1393–1410.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Rauch, Partial Differential Equations (Springer, New York, 1991).

    MATH  Google Scholar 

  15. E.B. Saff and A.B.J. Kuijlaars, Distributing many points on a sphere, Math. Intelligencer 19 (1997) 5–11.

    Article  MATH  MathSciNet  Google Scholar 

  16. I.J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942) 96–108.

    Article  MATH  MathSciNet  Google Scholar 

  17. S.L. Svensson, Finite elements on the sphere, J. Approx. Theory 40 (1984) 246–260.

    Article  MATH  MathSciNet  Google Scholar 

  18. S.L. Svensson, Pseudodifferential operators – a new approach to the boundary value problems of physical geodesy, Manuscr. Geod. 8 (1983) 1–40.

    MATH  MathSciNet  Google Scholar 

  19. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics, Vol. 1054 (Springer, Berlin, 1984).

    MATH  Google Scholar 

  20. V. Thomée, From finite differences to finite elements, short history of numerical analysis of partial differential equations, J. Comput. Appl. Math. 128 (2001) 1–54.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree, Adv. Comput. Math. 4 (1995) 389–396.

    MATH  MathSciNet  Google Scholar 

  22. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965).

    MATH  Google Scholar 

  23. D.L. Williamson et al., A standard test for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys. 102 (1992) 211–224.

    MATH  MathSciNet  Google Scholar 

  24. Y. Xu and E.W. Cheney, Strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 116 (1992) 977–981.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. T. Le Gia.

Additional information

Communicated by C.A. Micchelli

The results presented in this paper are taken from the author’s Ph.D. dissertation under supervision of Professor J.D. Ward and Professor F.J. Narcowich at Texas A&M University.

AMS subject classification

35K05, 65M70, 46E22

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Gia, Q.T. Approximation of parabolic PDEs on spheres using spherical basis functions. Adv Comput Math 22, 377–397 (2005). https://doi.org/10.1007/s10444-003-3960-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-003-3960-9

Keywords

Navigation