Skip to main content
Log in

The prime-counting function and its analytic approximations

π(x) and its approximations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper describes a systematic computational study of the prime counting function π(x) and three of its analytic approximations: the logarithmic integral \({\text{li}}{\left( x \right)}: = {\int_0^x {\frac{{dt}} {{\log \,t}}} }\), \({\text{li}}{\left( x \right)} - \frac{1} {2}{\text{li}}{\left( {{\sqrt x }} \right)}\), and \(R{\left( x \right)}: = {\sum\nolimits_{k = 1}^\infty {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} \mathord{\left/ {\vphantom {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} k}} \right. \kern-\nulldelimiterspace} k} }\), where μ is the Möbius function. The results show that π(x)<li(x) for 2≤x≤1014, and also seem to support several conjectures on the maximal and average errors of the three approximations, most importantly \({\left| {\pi {\left( x \right)} - {\text{li}}{\left( x \right)}} \right|} < x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}\) and \( - \frac{2} {5}x^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} < {\int_2^x {{\left( {\pi {\left( u \right)} - {\text{li}}{\left( u \right)}} \right)}du < 0} }\) for all x>2. The paper concludes with a short discussion of prospects for further computational progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bays, C., Hudson, R.: A new bound for the smallest x with π(x)>li(x). Math. Comp. 69, 1285–1296 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berndt, B.C.: Ramanujan’s Notebooks, Part IV. pp. 126–131. Springer, New York (1994)

    MATH  Google Scholar 

  3. Brent, R.P.: Irregularities in the distribution of primes and twin primes. Math. Comp. 29, 43–56 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. de la Vallée Poussin, C.J.: Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée. Mem. Cour. Acad. Roy. Belg. 59, 1 (1899)

    Google Scholar 

  5. Ford, K.: Vinogradov’s integral and bounds for the Riemann zeta function. Proc. London Math. Soc. 85, 565–633 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gauss, C.F.: Werke, Vol. II. Königliche Gesellschaft der Wissenschaften zu Göttingen, pp. 444–447 (1863)

  7. Gram, J.P.: Undersøgelser angående Mængden af Primtal under en given Grænse. Kong. Dansk. Videnskab. Selsk. Skr. (VI) 2, 183–308 (1884)

    Google Scholar 

  8. Ingham, A.E.: The distribution of prime numbers, pp. 105–106. Cambridge University Press, New York (1932)

    Google Scholar 

  9. Korobov, N.M.: Estimates of trigonometric sums and their applications. Usp. Mat. Nauk. 13, 185–192 (1958) (in Russian)

    MathSciNet  MATH  Google Scholar 

  10. Legendre, A.M.: Essai sur la théorie des nombres, 2ème dition, p.394. Courcier, Paris (1808)

  11. Lehman, R.S.: On the difference π(x)−li(x). Acta Arith. 11, 397–410 (1966)

    MathSciNet  MATH  Google Scholar 

  12. Littlewood, J.E.: Sur la distribution des nombres premiers. C. R. Acad. Sci. Paris 158, 1869–1872 (1914)

    MATH  Google Scholar 

  13. Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Preuss. Akad. Wiss. 1859 671–680 (1859)

    Google Scholar 

  14. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6, 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  15. Skewes, S.: On the difference π(x)−li(x). II. Proc. London Math. Soc. (3) 5, 48–70 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. te Riele, H.J.J.: On the sign of the difference π(x)−li(x). Math. Comp. 48, 323–328 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vinogradov, I.M.: A new estimate for ζ(1+it) [in Russian]. Izv. Akad. Nauk SSSR, Ser. Mat. 22, 161–164 (1958)

    MathSciNet  MATH  Google Scholar 

  18. von Koch, H.: Sur la distribution des nombres premiers. Acta Math. 24, 159–182 (1901)

    Article  MathSciNet  Google Scholar 

  19. von Mangoldt, H.: Zu Riemann’s Abhandlung ‘Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse’. J. Reine Angew. Math. 114, 255–305 (1895)

    Google Scholar 

  20. Walfisz, A.: Weylsche Exponentialsummen in der neueren Zahlentheorie, pp. 175–188. VEB Deutscher Verlag, Berlin (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadej Kotnik.

Additional information

Communicated by L. Reichel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotnik, T. The prime-counting function and its analytic approximations. Adv Comput Math 29, 55–70 (2008). https://doi.org/10.1007/s10444-007-9039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9039-2

Keywords

Mathematics Subject Classifications (2000)

Navigation