Skip to main content
Log in

Local reconstruction for sampling in shift-invariant spaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The local reconstruction from samples is one of most desirable properties for many applications in signal processing, but it has not been given as much attention. In this paper, we will consider the local reconstruction problem for signals in a shift-invariant space. In particular, we consider finding sampling sets X such that signals in a shift-invariant space can be locally reconstructed from their samples on X. For a locally finite-dimensional shift-invariant space V we show that signals in V can be locally reconstructed from its samples on any sampling set with sufficiently large density. For a shift-invariant space V(ϕ 1, ..., ϕ N ) generated by finitely many compactly supported functions ϕ 1, ..., ϕ N , we characterize all periodic nonuniform sampling sets X such that signals in that shift-invariant space V(ϕ 1, ..., ϕ N ) can be locally reconstructed from the samples taken from X. For a refinable shift-invariant space V(ϕ) generated by a compactly supported refinable function ϕ, we prove that for almost all \((x_0, x_1)\in [0,1]^2\), any signal in V(ϕ) can be locally reconstructed from its samples from \(\{x_0, x_1\}+{\mathbb Z}\) with oversampling rate 2. The proofs of our results on the local sampling and reconstruction in the refinable shift-invariant space V(ϕ) depend heavily on the linear independent shifts of a refinable function on measurable sets with positive Lebesgue measure and the almost ripplet property for a refinable function, which are new and interesting by themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta-Reyes, E., Aldroubi, A., Krishta, I.: On stability of sampling-reconstruction models. Adv. Comput. Math. (2008). doi:10.1007/s10444-008-9083-6

  2. Aldroubi, A., Gröchenig, K.: Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces. J. Fourier Anal. Appl. 6, 93–103 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant space. SIAM Rev. 43, 585–620 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aldroubi, A., Sun, Q., Tang, W.-S.: p-frames and shift invariant subspaces of L p. J. Fourier Anal. Appl. 7, 1–21 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aldroubi, A., Sun, Q., Tang, W.-S.: Non-uniform average sampling and reconstruction in multiply generated shift-invariant spaces. Constr. Approx. 20, 173–189 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aldroubi, A., Sun, Q., Tang, W.-S.: Convolution, average sampling and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 11, 215–244 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aldroubi, A., Sun, Q.: Locally finite dimensional shift-invariant spaces in R d. Proc. Amer. Math. Soc. 130, 2641–2654 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bi, N., Nashed, Z.M., Sun, Q.: Reconstructing signals with finite rate of innovation from noisy samples. Acta Appl. Math. (2008, submitted)

  9. Bownik, M.: The structure of shift-invariant subspaces of L 2(R n). J. Funct. Anal. 177, 282–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. de Boor, C., Devore, R., Ron, A.: The structure of finitely generated shift-invariant spaces in \(L_2({\mathbb R}^d)\). J. Funct. Anal. 119, 37–78 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Butzer, P.L., Hinsen, G.: Reconstruction of bounded signals from pseudo-periodic irregularly spaced samples. Signal Process. 17, 1–17 (1989)

    Article  MathSciNet  Google Scholar 

  12. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Amer. Math. Soc. 453, 1–186 (1991)

    MathSciNet  Google Scholar 

  13. Chen, W., Han, B., Jia, R.-Q.: Maximal gap of a sampling set for the iterative reconstruction algorithm in shift invariant spaces. IEEE Signal Process. Lett. 11, 655–658 (2004)

    Article  Google Scholar 

  14. Chen, W., Han, B., Jia, R.-Q.: On simple oversampled A/D conversion in shift invariant spaces. IEEE Trans. Inform. Theory 51, 648–657 (2005)

    Article  MathSciNet  Google Scholar 

  15. Chen, W., Han, B., Jia, R.-Q.: Estimate of aliasing error for non-smooth signal prefiltered by quasi-projection into shift invariant spaces. IEEE Trans. Signal Process. 53, 1927–1933 (2005)

    Article  MathSciNet  Google Scholar 

  16. Chen, W., Itoh, S., Shiki, J.: On sampling in shift invariant spaces. IEEE Trans. Inform. Theory 48, 2802–2810 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    Google Scholar 

  18. Devore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, New York (1993)

    MATH  Google Scholar 

  19. Djokovic, I., Vaidyanathan, P.P.: Generalized sampling theorems in multiresolution subspaces. IEEE Trans. Signal Process. 45, 583–599 (1997)

    Article  Google Scholar 

  20. Eldar, Y., Unser, M.: Nonideal sampling and interpolation from noisy observations in shift-invariant spaces. IEEE Trans. Signal Process. 54, 2636–2651 (2006)

    Article  Google Scholar 

  21. Feichtinger, H.G., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69, 423–440 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goodman, T.N.T., Jia, R.-Q., Zhou, D.-X.: Local linear independence of refinable vectors of functions. Proc. Roy. Soc. Edinburgh. 130A, 813–826 (2000)

    Article  MathSciNet  Google Scholar 

  23. Goodman, T.N.T., Micchelli, C.A.: On refinement equations determined by Pólya frequency sequences. SIAM J. Math. Anal. 23, 766–784 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goodman, T.N.T, Sun, Q.: Total positivity and refinable functions with general dilation. Appl. Comput. Harmon. Anal. 16, 69–89 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gröchenig, K., Schwab, H.: Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces. SIAM J. Matrix Anal. Appl. 24, 899–913 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hogan, J.A., Lakey, J.D.: Sampling and oversampling in shift-invariant and multiresolution spaces I: validation of sampling schemes. Int. J. Wavelets Multiresolut. Inf. Process. 3, 257–281 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hogan, J.A., Lakey, J.D.: Periodic nonuniform sampling in shift-invariant spaces. In: Heil, C. (ed.) Harmonic Analysis and Applications in Honor of John J. Benedetto, pp. 253–287. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  28. Huang, D., Sun, Q.: Affine similarity of refinable functions. Approx. Theory Appl. 15(3), 81–91 (1999)

    MATH  MathSciNet  Google Scholar 

  29. Janssen, A.J.E.M.: The Zak transform and sampling for wavelet subspaces. IEEE Trans. Signal Process. 41, 3360–3364 (1993)

    Article  MATH  Google Scholar 

  30. Jia, R.-Q., Micchelli, C.A.: On linear independence of integer translates of a finite number of functions. Proc. Edinburgh Math. Soc. 36, 69–75 (1992)

    Article  MathSciNet  Google Scholar 

  31. Lawton, W., Lee, S.L., Shen, Z.: An algorithm for matrix extension and wavelet construction. Math. Comp. 65, 723–737 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lemarié, P.G.: Fonctions á support compact dans les analyses multi-résolutions. Rev. Mat. Iberoamericana 7, 157–182 (1991)

    MATH  MathSciNet  Google Scholar 

  33. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  34. Maravic, I., Vetterli, M.: Sampling and reconstruction of signals with finite rate of innovation in the presence of noise. IEEE Trans. Signal Process. 53, 2788–2805 (2005)

    Article  MathSciNet  Google Scholar 

  35. Meyer, Y.: Ondelettes sur l’intervalle. Rev. Mat. Iberoamericana 7, 115–133 (1991)

    MATH  MathSciNet  Google Scholar 

  36. Pena, J.M.: Refinable functions with general dilation and a stable test for generalized Routh-Hurwitz conditions. Comm. Pure Appl. Anal. 6, 809–818 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Papoulis, A.: Signal Processing. Mcgraw-Hill, New York (1977)

    Google Scholar 

  38. Ron, A.: A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution. Constr. Approx. 5, 297–308 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  39. Smale, S., Zhou, D.-X.: Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41, 279–305 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  41. Strohmer, T., Tanner, J.: Fast reconstruction methods for band-limited functions from periodic nonuniform sampling. SIAM J. Numer. Anal. 44, 1073–1094 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sun, Q.: Two-scale difference equation: local and global linear independence. Manuscript. http://math.ucf.edu/∼qsun/Preprints/Local.ps (1991)

  43. Sun, Q.: Non-uniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J. Math. Anal. 38, 1389–1422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28, 301–329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sun, W., Zhou, X.: Characterization of local sampling sequences for spline subspaces. Adv. Comput. Math. (2008). doi:10.1007/s10444-008-9062-y

  46. Triebel, H.: Theory of Function Spaces. Birkhauser, Boston (1983)

    Google Scholar 

  47. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50, 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  48. Unser, M., Aldroubi, A.: A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process. 42, 2915–2925 (1994)

    Article  Google Scholar 

  49. Unser, M.: Sampling – 50 years after Shannon. Proc. IEEE 88, 569–587 (2000)

    Article  Google Scholar 

  50. Vaidyanathan, P.P.: Generalizations of the sampling thoerem: seven decades after Nyquist. IEEE Trans. Circuits Systems I Fund. Theory Appl. 48, 1094–1109 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  51. Walter, G.G.: A sampling theorem for wavelet subspaces. IEEE Trans. Inform. Theory 38, 881–884 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Sun.

Additional information

Communicated by R.Q. Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q. Local reconstruction for sampling in shift-invariant spaces. Adv Comput Math 32, 335–352 (2010). https://doi.org/10.1007/s10444-008-9109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-008-9109-0

Keywords

Mathematics Subject Classifications (2000)

Navigation