Skip to main content
Log in

An efficient two-step algorithm for the incompressible flow problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 12 July 2016

Abstract

A new two-step stabilized finite element method for the 2D/3D stationary Navier–Stokes equations based on local Gauss integration is introduced and analyzed in this paper. The method consists of solving one Navier–Stokes problem based on the P 1P 1 finite element pair and then solving a general Stokes problem based on the P 2P 2 finite element pair, i.e., computes a lower order predictor and a higher order corrector. Moreover, the stability and convergence of the present method are deduced, which show that the new method provides an approximate solution with the convergence rate of the same order as the P 2P 2 stabilized finite element solution solving the Navier–Stokes equations on the same mesh width. However, our method can save a large amount of computational time. Finally, numerical tests confirm the theoretical results of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammi, A.A.O., Marion, M.: Nonlinear Galerkin method and mixed finite elements: two-grid algorithms for the Navier–Stokes equations. Numer. Math. 68, 189–213 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Becker, R., Hansbo, P.: A simple pressure stabilization method for the Stokes equation. Commun. Numer. Meth. Engrg. 24, 1421–1430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochev, P., Gunzburger, M.D.: An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 42, 1189–1207 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bochev, P., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44, 82–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erturk, E., Corke, T., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

    Article  MATH  Google Scholar 

  6. Ervin, V., Layton, W., Maubach, J.: A posteriori error estimators for a two-level finite element method for the Navier–Stokes equations. Numer. Meth. Part. Differ. Equ. 12, 333–346 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gartling, D.K.: A test problem for outflow boundary conditions—flow over a backward-facing step. Int. J. Numer. Methods Fluids 11, 953–967 (1990)

    Article  Google Scholar 

  8. Ghia, U., Ghia, K.N., Shin, C.T.: High-resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys.3 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  9. Girault, V., Raviart, P.A.: Finite Element Methods for the Navier–Stokes Equations. Spinger, Berlin (1986)

    Book  MATH  Google Scholar 

  10. He, Y.N.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Y.N., Li, K.T.: Two-level stabilized finite element methods for the steady Navier–Stokes problem. Computing 74, 337–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, Y.N., Wang, A.W., Mei, L.Q.: Stabilized finite-element method for the stationary Navier–Stokes equations. J. Engrg. Math. 51, 367–380 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Y.N., Wang, A.W.: A simplified two-level method for the steady Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 197, 1568–1576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, Y.N., Li, J.: A stabilized finite element method based on local polynomial pressure projection for the stationary Navier–Stokes equations. Appl. Numer. Math. 58, 1503–1514 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, Y.N., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 198, 1351–1359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, Y.N., Li, J.: Two-level methods based on three corrections for the 2D/3D steady Navier–Stokes equations. Inter. J. Numer. Anal. Model. Ser. B 2, 42–56 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Hecht, F., Pironneau, O., Hyaric, A.L., Ohtsuka, K.: Freefem++, version 2.3-3, 2008. Software avaible at http://www.freefem.org

  18. Heywood, J.G., Rannacher, R.: Finite-element approximations of the nonstationary Navier–Stokes problem. Part I: Regularity of solutions and second-order spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Larsson, S.: The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems. SIAM J. Numer. Anal. 26, 348–365 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Layton, W.: A two level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 26, 33–38 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Layton, W., Lenferink, W., Picard, Two-level: modified Picard methods for the Navier–Stokes equations. Appl. Math. Comput. 69, 263–274 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier–Stokes equations. SIAM J. Numer. Anal. 35, 2035–2054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Layton, W.: Introduction to Finite Element Methods for Incompressible Viscous Flows. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  24. Li, J.: Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier–Stokes equations. Appl. Math. Comput. 182, 1470–1481 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Li, J., He, Y.N., Chen, Z.X.: A new stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 197, 22–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J., He, Y.N.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214, 58–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, J., Chen, Z.: A new local stabilized nonconforming finite element method for the Stokes equations. Computing 82, 157–170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, J., Chen, Z.: A new stabilized finite volume method for the stationary Stokes equations. Adv. Comput. Math. 30, 141–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Masud, A., Khurram, R.A.: A multiscale finite element method for the incompressible Navier–Stokes equations. Comput. Meth. Appl. Mech. Engrg. 195, 1750–1777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Temam, R., Equations, Navier–Stokes, 3rd ed.: Theory and Numerical Analysis. North-Holland, Amsterdam (1983)

    Google Scholar 

  31. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1778 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Y., He, Y.N.: A two-level finite element method for the stationary Navier–Stokes equations based on a stabilized local projection. Numer. Meth. Part. Differ. Equ. 27, 460–477 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zheng, H.B., Hou, Y.R., Shi, F., Song, L.N.: A finite element variational multiscale method for incompressible flows based on two local Gauss integrations. J. Comput. Phys. 228, 5961–5977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, H.B., Shan, L., Hou, Y.R.: A quadratic equal-order stabilized method for Stokes problem based on two local Gauss integrations. Numer. Meth. Part. Differ. Equ. 26, 1180–1190 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhan Huang.

Additional information

Communicated by: A. Zhou

This research was supported by the NSF of China (Grant No. 11401511), the Distinguished Young Scholars Fund of Xinjiang Province (Grant No. 2013711010), the China Postdoctoral Science Foundation (Grant No. 2014T70954) and the Scientific Research Program of the Higher Education Institution of Xinjiang (Grant No. XJEDU2014S002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Feng, X. & He, Y. An efficient two-step algorithm for the incompressible flow problem. Adv Comput Math 41, 1059–1077 (2015). https://doi.org/10.1007/s10444-014-9400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9400-1

Keywords

Mathematics Subject Classification (2000)

Navigation