Skip to main content
Log in

Causal conformal vector fields, and singularities of twistor spinors

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we study the geometry around the singularity of a twistor spinor, on a Lorentz manifold (M, g) of dimension greater or equal to three, endowed with a spin structure. Using the dynamical properties of conformal vector fields, we prove that the geometry has to be conformally flat on some open subset of any neighbourhood of the singularity. As a consequence, any analytic Lorentz manifold, admitting a twistor spinor with at least one zero has to be conformally flat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevski D. (1985). Self-similar Lorentzian manifolds. Ann. Global Anal. Geom. 3(1): 59–84

    Article  MATH  MathSciNet  Google Scholar 

  2. Baum H. and Leitner F. (2004). The twistor equation in Lorentzian Spin geometry. Math. Z 247(4): 795–812

    Article  MATH  MathSciNet  Google Scholar 

  3. Beem J.K. and Ehrlich P.E. (1981). Global Lorentzian Geometry. Dekker, New York

    MATH  Google Scholar 

  4. Besse, A.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 10, Springer-Verlag, Berlin (1987)

  5. Eisenhart L. (1949). Riemannian Geometry. 2d printing. Princeton University Press, Princeton, NJ

    Google Scholar 

  6. Frances, C.: Géométrie et dynamique lorentziennes conformes. Thèse. Available at http://mahery.math.u-psud.fr/~frances

  7. Frances C. (2005). Sur les variétés lorentziennes dont le groupe conforme est essentiel. Math. Ann. 332(1): 103–119

    Article  MATH  MathSciNet  Google Scholar 

  8. Kühnel W. and Rademacher H.B. (1995). Essential conformal fields in pseudo-Riemannian geometry I. J. Math. Pures Appl. 74(5): 453–481

    MATH  MathSciNet  Google Scholar 

  9. Kühnel W. and Rademacher H.B. (1997). Essential conformal fields in pseudo-Riemannian geometry II. J. Math. Sci. Univ. Tokyo 4(3): 649–662

    MATH  MathSciNet  Google Scholar 

  10. Lawson H.B. and Michelsohn M. (1989). Spin Geometry. Princeton Mathematical series. Princeton University Press, Princeton, NJ

    Google Scholar 

  11. Leitner, F.: Zeros of conformal vector fields and twistor spinors in Lorentzian geometry. SFB288-Preprint. No 439. Berlin (1999)

  12. Markowitz M.J. (1981). An intrinsic conformal Lorentz pseudodistance. Math. Proc. Camb. Phil. Soc: 89: 359–371

    Article  MATH  MathSciNet  Google Scholar 

  13. Zeghib A. (1999). Isometry groups and geodesic foliations of Lorentz manifolds. I,II. Foundations of Lorentz dynamics. Geom. Funct. Anal. 9(4): 775–822

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Frances.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frances, C. Causal conformal vector fields, and singularities of twistor spinors. Ann Glob Anal Geom 32, 277–295 (2007). https://doi.org/10.1007/s10455-007-9060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9060-1

Keywords

Mathematics Subject Classification (2000)

Navigation