Skip to main content
Log in

Orbifold homeomorphism finiteness based on geometric constraints

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We show that any collection of n-dimensional orbifolds with sectional curvature and volume uniformly bounded below, diameter bounded above, and with only isolated singular points contains orbifolds of only finitely many orbifold homeomorphism types. This is a generalization to the orbifold category of a similar result for manifolds proven by Grove, Petersen, and Wu. It follows that any Laplace isospectral collection of orbifolds with sectional curvature uniformly bounded below and having only isolated singular points also contains only finitely many orbifold homeomorphism types. The main steps of the argument are to show that any sequence from the collection has subsequence that converges to an orbifold, and then to show that the homeomorphism between the underlying spaces of the limit orbifold and an orbifold from the subsequence that is guaranteed by Perelman’s stability theorem must preserve orbifold structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adem A., Leida J., Ruan Y.: Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics, 171. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  2. Borzellino J.: Orbifolds of maximal diameter. Indiana Univ. Math. J. 42(1), 37–53 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brooks B., Perry P., Petersen P.: Compactness and finiteness for isospectral manifolds. J. Reine Angew. Math. 426, 67–89 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Burago D., Burago Y., Ivanov S.: A Course in Metric Geometry. Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  5. Cheeger J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 92, 61–74 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chiang, Y.-J.: Spectral geometry of V-manifolds and its application to harmonic maps. Differential geometry: Partial differential equations on manifolds, Los Angeles, CA, 1990. Proceedings of Pure Symposia in Pure Mathametics, vol. 54, pp. 93–99. American Mathematical Society, Providence, RI (1993)

  7. Dryden E., Gordon C., Greenwald S., Webb D.L.: Asymptotic expansion of the heat kernel for orbifolds. Mich. Math. J. 56, 205–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farsi C.: Orbifold spectral theory. Rocky Mt. J. Math. 31, 215–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fukaya K.: Theory of convergence for Riemannian orbifolds. Jpn. J. Math. 12(1), 121–160 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Greene R.E., Wu H.: Approximation theorems, C convex exhaustions and manifolds of positive curvature. Bull. Am. Math. Soc. 81, 101–104 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gromov M.: Groups of polynomial growth and expanding maps. Inst. Hautes Etud. Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grove K., Petersen P.: Bounding homotopy types by geometry. Ann. Math. 128, 195–206 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grove K., Petersen P., Wu J-Y.: Geometric finiteness theorems via contolled topology. Invent Math. 99, 205–213 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kapovitch V.: Regularity of noncollapsing limits of manifolds. Geom. Funct. Anal. 12(1), 121–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kapovitch, V.: Perelman’s stability theorem. Surveys in differential geometry. Surv. Differ. Geom, vol. XI, pp. 103–136, 11, International Press, Somerville, MA (2007)

  16. Kleiner, B., Lott, J.: Geometrization of three-dimensional orbifolds via Ricci flow, arXiv:1101.3733v2 [math:DG]

  17. Perelman, G.: Alexandrov’s spaces with curvatures bounded from below, II. preprint (1991)

  18. Perelman G.: Elements of Morse theory on Aleksandrov spaces. St. Petersburg Math. J. 5(1), 205–213 (1994)

    MathSciNet  Google Scholar 

  19. Perelman G., Petrunin A.: Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. St. Petersburg Math. J. 5(1), 215–227 (1994)

    MathSciNet  Google Scholar 

  20. Petersen P.: Riemannian Geometry. Graduate Texts in Mathematics, 171. Springer, New York (1998)

    Google Scholar 

  21. Petrunin A.: Applications of quasigeodesics and gradient curves. Comparison geometry (Berkeley, CA, 1993–1994). Math. Sci. Res. Inst. Publ., vol. 30, pp. 203–219. Cambridge University Press, Cambridge (1997)

  22. Proctor E., Stanhope E.: Spectral and geometric bounds on 2-orbifold diffeomorphism type. Differ. Geom. Appl. 28(1), 12–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Satake I.: On a generalization of the notion of a manifold. Proc. Natl. Acad. Sci. USA 42, 359–363 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stanhope E.: Spectral bounds on orbifold isotropy. Ann. Global Anal. Geom. 27(4), 355–375 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thurston, W.: The geometry and topology of 3-manifolds, Lecture Notes. http://www.msri.org/publications/books/gt3m/ (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Proctor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proctor, E. Orbifold homeomorphism finiteness based on geometric constraints. Ann Glob Anal Geom 41, 47–59 (2012). https://doi.org/10.1007/s10455-011-9270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-011-9270-4

Keywords

Mathematics Subject Classification (2000)

Navigation