Skip to main content
Log in

Pairs of Semisimple Lie Algebras and their Maximal Reductive Subalgebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let \(\mathfrak g\) be a semisimple Lie algebra over a field \(\mathbb K\), \(\text{char}\left( \mathbb{K} \right)=0\), and \(\mathfrak g_1\) a subalgebra reductive in \(\mathfrak g\). Suppose that the restriction of the Killing form B of \(\mathfrak g\) to \(\mathfrak g_1 \times \mathfrak g_1\) is nondegenerate. Consider the following statements: ( 1) For any Cartan subalgebra \(\mathfrak h_1\) of \(\mathfrak g_1\) there is a unique Cartan subalgebra \(\mathfrak h\) of \(\mathfrak g\) containing \(\mathfrak h_1\); ( 2) \(\mathfrak g_1\) is self-normalizing in \(\mathfrak g\); ( 3) The B-orthogonal \(\mathfrak p\) of \(\mathfrak g_1\) in \(\mathfrak g\) is simple as a \(\mathfrak g_1\)-module for the adjoint representation. We give some answers to this natural question: For which pairs \((\mathfrak g,\mathfrak g_1)\) do ( 1), ( 2) or ( 3) hold? We also study how \(\mathfrak p\) in general decomposes as a \(\mathfrak g_1\)-module, and when \(\mathfrak g_1\) is a maximal subalgebra of \(\mathfrak g\). In particular suppose \((\mathfrak g,\sigma )\) is a pair with \(\mathfrak g\) as above and σ its automorphism of order m. Assume that \(\mathbb K\) contains a primitive m-th root of unity. Define \(\mathfrak g_1:=\mathfrak g^{\sigma}\), the fixed point algebra for σ. We prove the following generalization of a well known result for symmetric Lie algebras, i.e., for m=2: (a) \((\mathfrak g,\mathfrak g_1)\) satisfies ( 1); (b) For m prime, \((\mathfrak g,\mathfrak g_1)\) satisfies ( 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourbaki, N.: Groupes et Algèbres de Lie, Chapitres VII, VIII. Hermann, Paris (1975)

    Google Scholar 

  2. Brylinski, R., Kostant, B.: Nilpotent orbits, normality, and Hamiltonian group actions. J. Amer. Math. Soc. 7, 269–298 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Collingwood, D.H., McGovern, W.M.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold, New York (1993)

    MATH  Google Scholar 

  4. Dixmier, J.: Enveloping Algebras. North-Holland Mathematical Library, vol. 14. North-Holland, Amsterdam (1977)

    Google Scholar 

  5. Enright, T.J., Hunziker, M., Wallach, N.R.: A Pieri rule for Hermitian symmetric pairs I. Pacific J. Math. 214, 23–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  7. Howe, R., Tan, E.-C., Willenbring, J.F.: Stable branching rules for classical symmetric pairs. Trans. Amer. Math. Soc. 357, 1601–1626 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kac, V.: Automorphisms of finite order of semisimple Lie algebras. Funkcional. Anal. i Prilozen. 3, 94–96 (1969)

    Google Scholar 

  9. Knapp, A.W.: Lie groups beyond an introduction. Progress in Math., vol. 140. Birkhäuser, Boston (1996)

    Google Scholar 

  10. Knapp, A.W.: Geometric interpretations of two branching theorems of D.E. Littlewood. J. Algebra 270, 728–754 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak q(\lambda )}\) with respect to reductive subgroups III. Restriction of Harish-Chandra modules and associated varieties. Invent. Math. 131, 229–256 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kobayashi, T.: Discretely decomposable restrictions of unitary representations of reductive Lie groups – examples and conjectures. Analysis on homogeneous spaces and representation theory of Lie groups. Okayama-Kyoto (1997), 99–127, Adv. Stud. Pure Math., 26, Math. Soc. Japan, Tokyo (2000)

  13. Kostant, B.: Dirac cohomology for the cubic Dirac operator, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000). Progress in Math., vol. 210, pp. 69–93. Birkhäuser Boston, Boston (2003)

    Google Scholar 

  14. Kostant, B.: A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil theorem. Noncommutative harmonic analysis. Progress in Math., vol. 220, pp. 291–353. Birkhäuser Boston, Boston (2004)

    Google Scholar 

  15. Levasseur, T., Smith, S.P.: Primitive ideals and nilpotent orbits in type G 2. J. Algebra 114, 81–105 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Širola, B.: Some structural results for nonsymmetric pairs of Lie algebras. J. Algebra 185, 571–582 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Širola, B.: A generalized global Cartan decomposition: a basic example. Comm. Algebra 34, 3267–3279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Širola, B.: On pairs of complex Lie groups and generalized global Cartan decomposition. Grazer Math. Ber. 348, 79–90 (2005)

    MATH  Google Scholar 

  19. Vogan Jr., D.A.: The orbit method and primitive ideals for semisimple Lie algebras. Lie Algebras and Related Topics. CMS Conf. Proc., vol. 5, pp. 281–316. Am. Math. Soc. Providence, RI (1986)

  20. Vogan Jr., D.A.: Noncommutative algebras and unitary representations. Proc. Sympos. Pure Math. vol. 48, pp. 35–60. Am. Math. Soc. Providence, RI (1988)

  21. Vogan Jr., D.A.: The unitary dual of G 2. Invent. Math. 116, 677–791 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Širola.

Additional information

The author was supported in part by the Ministry of Science and Technology, Republic of Croatia, Grant no. 037-0372781-2811.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Širola, B. Pairs of Semisimple Lie Algebras and their Maximal Reductive Subalgebras. Algebr Represent Theor 11, 233–250 (2008). https://doi.org/10.1007/s10468-007-9068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-007-9068-z

Keywords

Mathematics Subject Classifications (2000)

Navigation