Skip to main content
Log in

Sparse finite element methods for operator equations with stochastic data

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Let A: V → V′ be a strongly elliptic operator on a d-dimensional manifold D (polyhedra or boundaries of polyhedra are also allowed). An operator equation Au = f with stochastic data f is considered. The goal of the computation is the mean field and higher moments \(\mathcal{M}^1 u \in V,\mathcal{M}^2 u \in V \otimes V,...,\mathcal{M}^k u \in V \otimes ... \otimes V\) of the solution.

We discretize the mean field problem using a FEM with hierarchical basis and N degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment \(\mathcal{M}^k u\) for k⩾1.

The key tool in both algorithms is a “sparse tensor product” space for the approximation of \(\mathcal{M}^k u\) with O(N(log N)k−1) degrees of freedom, instead of N k degrees of freedom for the full tensor product FEM space.

A sparse Monte-Carlo FEM with M samples (i.e., deterministic solver) is proved to yield approximations to \(\mathcal{M}^k u\) with a work of O(M N(log N)k−1) operations. The solutions are shown to converge with the optimal rates with respect to the Finite Element degrees of freedom N and the number M of samples.

The deterministic FEM is based on deterministic equations for \(\mathcal{M}^k u\) in D k ⊂ ℝkd. Their Galerkin approximation using sparse tensor products of the FE spaces in D allows approximation of \(\mathcal{M}^k u\) with O(N(log N)k−1) degrees of freedom converging at an optimal rate (up to logs).

For nonlocal operators wavelet compression of the operators is used. The linear systems are solved iteratively with multilevel preconditioning. This yields an approximation for \(\mathcal{M}^k u\) with at most O(N (log N)k+1) operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Babuška: On randomized solution of Laplace’s equation. Čas. Pěst. Mat. 86 (1961), 269–276.

    Google Scholar 

  2. I. Babuška: Error-bounds for finite element method. Numer. Math. 16 (1971), 322–333.

    Article  MathSciNet  Google Scholar 

  3. I. Babuška, R. Tempone, and G. Zouraris: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004), 800–825.

    Article  MathSciNet  Google Scholar 

  4. V. I. Bogachev: Gaussian Measures. AMS Mathematical Surveys and Monographs Vol. 62. AMS, Providence, 1998.

    Google Scholar 

  5. L. Breiman: Probability. Addison-Wesley, Reading, 1968.

    Google Scholar 

  6. W. A. Light, E.W. Cheney: Approximation Theory in Tensor Product Spaces. Lecture Notes in Mathematics Vol. 1169. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  7. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Elsevier Publ. North Holland, Amsterdam, 1978.

    Google Scholar 

  8. M. Dahmen, H. Harbrecht, and R. Schneider: Compression techniques for boundary integral equations— optimal complexity estimates. SIAM J. Numer. Anal. 43 (2006), 2251–2271.

    Article  MathSciNet  Google Scholar 

  9. W. Dahmen, R. Stevenson: Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37 (1999), 319–352.

    Article  MathSciNet  Google Scholar 

  10. S. C. Eisenstat, H. C. Elman, M. H. Schultz: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983), 345–357.

    Article  MathSciNet  Google Scholar 

  11. M. Griebel, P. Oswald, T. Schiekofer: Sparse grids for boundary integral equations. Numer. Math. 83 (1999), 279–312.

    Article  MathSciNet  Google Scholar 

  12. S. Hildebrandt, N. Wienholtz: Constructive proofs of representation theorems in separable Hilbert space. Commun. Pure Appl. Math. 17 (1964), 369–373.

    MathSciNet  Google Scholar 

  13. G. C. Hsiao, W. L. Wendland: A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58 (1977), 449–481.

    Article  MathSciNet  Google Scholar 

  14. S. Janson: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  15. S. Larsen: Numerical analysis of elliptic partial differential equations with stochastic input data. Doctoral Dissertation. Univ. of Maryland, 1985.

  16. M. Ledoux, M. Talagrand: Probability in Banach Spaces. Isoperimetry and Processes. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  17. P. Malliavin: Stochastic Analysis. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  18. W. McLean: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  19. J. C. Nédélec, J. P. Planchard: Une méthode variationelle d’éléments finis pour la résolution numérique d’un problème extérieur dans ℝ3. RAIRO Anal. Numér. 7 (1973), 105–129.

    Google Scholar 

  20. G. Schmidlin, C. Lage, and C. Schwab: Rapid solution of first kind boundary integral equations in ℝ 3. Eng. Anal. Bound. Elem. 27 (2003), 469–490.

    Article  Google Scholar 

  21. T. von Petersdorff, C. Schwab: Wavelet approximations for first kind boundary integral equations in polygons. Numer. Math. 74 (1996), 479–516.

    Article  MathSciNet  Google Scholar 

  22. T. von Petersdorff, C. Schwab: Numerical solution of parabolic equations in high dimensions. M2AN, Math. Model. Numer. Anal. 38 (2004), 93–127.

    Article  MathSciNet  Google Scholar 

  23. R. Schneider: Multiskalen-und Wavelet-Matrixkompression. Advances in Numerical Mathematics. Teubner, Stuttgart, 1998.

  24. C. Schwab, R. A. Todor: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95 (2003), 707–734.

    Article  MathSciNet  Google Scholar 

  25. C. Schwab, R. A. Todor: Sparse finite elements for stochastic elliptic problems—higher order moments. Computing 71 (2003), 43–63.

    Article  MathSciNet  Google Scholar 

  26. S. A. Smolyak: Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4 (1963), 240–243.

    Google Scholar 

  27. V. N. Temlyakov: Approximation of Periodic Functions. Nova Science Publ., New York, 1994.

    Google Scholar 

  28. G.W. Wasilkowski, H. Wozniakowski: Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complexity 11 (1995), 1–56.

    Article  MathSciNet  Google Scholar 

  29. N. Wiener: The homogeneous Chaos. Amer. J. Math. 60 (1938), 987–936.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported under IHP Network “Breaking Complexity” by the Swiss BBW under grant No. 02.0418

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Petersdorff, T., Schwab, C. Sparse finite element methods for operator equations with stochastic data. Appl Math 51, 145–180 (2006). https://doi.org/10.1007/s10492-006-0010-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-006-0010-1

Keywords

Navigation