Skip to main content
Log in

Front tracking for a model of immiscible gas flow with large data

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study front tracking for a model of one dimensional, immiscible flow of several isentropic gases, each governed by a gamma-law. The model consists of the p-system with variable gamma representing the different gases. The main result is the convergence of a front tracking algorithm to a weak solution, thereby giving existence as well. This convergence holds for general initial data with a total variation satisfying a specific bound. The result is illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadori, D., Corli, A.: On a model of multiphase flow. SIAM J. Math. Anal. 40(1), 134–166 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asakura, F.: Wave-front tracking for the equation of non-isentropic gas dynamics. RIMS Kokyuroku 1495, 78–91 (2006)

    Google Scholar 

  3. Asakura, F.: Wave-front tracking for the equation of isentropic gas dynamics. Q. Appl. Math. 63(1), 20–33 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Bressan, A.: Hyperbolic Systems of Conservation Laws. Oxford University Press, London (2000)

    MATH  Google Scholar 

  5. Bressan, A., Colombo, R.M.: Unique solutions of 2×2 conservation laws with large data. Indiana Univ. Math. J. 44(3), 677–725 (1993)

    MathSciNet  Google Scholar 

  6. Chalons, C., Coquel, F.: Navier–Stokes equations with several independent pressure laws and explicit predictor-corrector schemes. Numer. Math. 101, 451–478 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, G.-Q., Christoforou, C., Zhang, Y.: Dependence of entropy solutions in the large for the Euler equations on nonlinear flux functions. Indiana Univ. Math. J. 56(5), 2535–2567 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, G.-Q., Christoforou, C., Zhang, Y.: Continuous dependence of entropy solutions to the Euler equations on the adiabatic exponent and Mach number. Arch. Ration. Mech. Anal. 189, 97–130 (2008)

    Article  MathSciNet  Google Scholar 

  9. DiPerna, R.J.: Existence in the large for quasilinear hyperbolic conservation laws. Arch. Ration. Mech. Anal. 52, 244–257 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Evje, S., Karlsen, K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245(9), 2660–2703 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fan, H.: On a model of the dynamics of liquid/vapor phase transitions. SIAM J. Appl. Math. 60(4), 1270–1301 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Glimm, J.: Solution in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  13. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, Berlin (2007), revised printing

    Google Scholar 

  14. Holden, H., Risebro, N.H., Sande, H.: The solution of the Cauchy problem with large data for a model of a mixture of gases. J. Hyperbolic Differ. Equ. 6(1), 25–106 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, T.-P.: Solutions in the large for the equations of nonisentropic gas dynamics. Indiana Univ. Math. J. 26(1), 147–177 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, T.P., Smoller, J.A.: On the vacuum state for the isentropic gas dynamics equations. Adv. Appl. Math. 1(4), 345–359 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lu, Y.: Hyperbolic Conservation Laws and the Compensated Compactness Method. Shapman&Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  18. Nishida, T.: Global solution for an initial boundary value problem for a quasilinear hyperbolic system. Proc. Jpn. Acad. 44, 642–646 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nishida, T., Smoller, J.A.: Solution in the large for some nonlinear hyperbolic conservation laws. Commun. Pure Appl. Math. 26, 183–200 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Peng, Y.-J.: Solutions faibles globales pour l’quation d’Euler d’un fluide compressible avec de grandes donnees initales. Commun. Partial Differ. Equ. 17(1–2), 161–187 (1992)

    MATH  Google Scholar 

  21. Peng, Y.-J.: Solutions faibles globales pour un modèle d’écoulements diphasiques. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 21(4), 523–540 (1994)

    MATH  Google Scholar 

  22. Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, Berlin (1994)

    MATH  Google Scholar 

  23. Temple, J.B.: Solution in the large for the nonlinear hyperbolic conservation laws of gas dynamics. J. Differ. Equ. 41, 96–161 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Temple, B., Young, R.: The large time stability of sound waves. Commun. Math. Phys. 179(2), 417–466 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wagner, D.H.: Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differ. Equ. 68(1), 118–136 (1987)

    Article  MATH  Google Scholar 

  26. Wissman, B.D.: Global solutions to the ultra-relativistic Euler equations. arXiv:0705.1333v1 [math.AP] 9 May 2007

  27. Yong, W.-A.: A simple approach to Glimm’s interaction estimates. Appl. Math. Lett. 12(2), 29–34 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilde Sande.

Additional information

Communicated by Anders Szepessy.

This paper was written as part of the international research program on Nonlinear Partial Differential Equations at the Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo during the academic year 2008–09. Supported in part by the Research Council of Norway through the project “Integro-PDEs: Numerical methods, Analysis, and Applications to Finance”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holden, H., Risebro, N.H. & Sande, H. Front tracking for a model of immiscible gas flow with large data. Bit Numer Math 50, 331–376 (2010). https://doi.org/10.1007/s10543-010-0264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0264-6

Keywords

Mathematics Subject Classification (2000)

Navigation