Skip to main content
Log in

On the existence of J 2 invariant relative orbits from the dynamical system point of view

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The present paper addresses the existence of J 2 invariant relative orbits with arbitrary relative magnitude over the infinite time using the Routh reduction and Poincaré techniques in the J 2 Hamiltonian problem. The current research also proposes a novel numerical searching approach for J 2 invariant relative orbits from the dynamical system point of view. A new type of Poincaré mapping is defined from different central manifolds of the pseudo-circular orbits (parameterized by the Jacobi energy E, the polar component of momentum H z and the measure of distance Δr between the fixed point and its central manifolds) to the nodal periods T d and the drifts of longitude of the ascending node during one period (ΔΩ), which differs from Koon et al.’s (AIAA 2001) definition on central manifolds parameterized by the same fixed point. The Poincaré mapping is surjective because it compresses the three-dimensional variables into two-dimensional images, and the mapping degenerates into a bijective mapping in consideration of the fixed points. An iteration algorithm to the degenerated bijective mapping is proposed from the continuation procedure to perform the ergodic representation of E- and H z -contour maps on the space of T d –ΔΩ. For the surjective mapping with Δr ≠ 0, different pseudo-circular or elliptical orbits may share the same images. Hence, the inverse surjective mapping may achieve non-unique variables from a single image, which makes the generation of J 2 invariant relative orbits possible. The pseudo-circular or elliptical orbits generated from the surjective mapping will be defined in different meridian planes. Hence, the critical contribution of the present paper is the assignment of J 2 invariant relative orbits to different invariant parameters E and H z depending on the E- and H z -contour map, which will hold J 2 invariant relative orbits for extended durations. To investigate the high-order nonlinearity neglected by previous studies, a formation configuration with a large magnitude of 500 km is successfully generated from the theory developed in the present work, which is beyond the scope of the linear conditions of J 2 invariant relative orbits. Therefore, the existence of J 2 invariant relative orbit with an arbitrary relative magnitude over the infinite time is achieved from the dynamical system point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfriend, K.T., Yan, H.: An orbital elements approach to the nonlinear formation flying problem. In: International Formation Flying Symposium, Toulouse, France, Oct 29–31 (2002)

  • Breger, L., How, P.: Partial J 2-invariance for spacecraft formations. In: AIAA/AAS Astrodynamics Conference, Keystone, AIAA pp. 2006–6585 (2006)

  • Broucke R.A.: Numerical integration of periodic orbits in the main problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 58, 99–123 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Brouwer D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64(9), 378–397 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • D’Amico S., Montenbruck O.: Proximity operations of formation flying spacecraft using an eccentricity/inclination vector separation. J. Guid. Control Dyn. 29(3), 554–563 (2006)

    Article  Google Scholar 

  • Deprit A., Rom A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2, 166–206 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Duan, X., Bainum, P.M.: Design of spacecraft formation flying orbits. In: AAS, pp. 03–588 (2003)

  • Fasano G., D’Errico M.: Modeling orbital relative motion to enable formation design from application requirements. Celest. Mech. Dyn. Astron. 105, 113–139 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Halsall M., Palmer P.L.: Modelling natural formations of LEO satellites. Celest. Mech. Dyn. Astron. 99, 105–127 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Koon, W.S., Marsden, J.E., Murray, R.M., Masdemont, J.: J 2 Dynamics and formation flight. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, AIAA, pp. 2001–4090 (2001)

  • Martinusi V., Gurfil P.: Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celestl. Mech. Dyn. Astron. 111, 387–414 (2011)

    Article  ADS  Google Scholar 

  • Montenbruck O., Kirschner M., D’Amico S., Bettadpur S.: E/I-vector separation for safe switching of the GRACE formation. Aerosp. Sci. Technol. 10(7), 628–635 (2006)

    Article  MATH  Google Scholar 

  • Sabatini M., Izzo D., Palmerini G.: Minimum control for spacecraft formations in a J 2 perturbed environment. Celestl. Mech. Dynl. Astron. 105, 141–157 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schaub H., Alfriend K.T.: J 2 Invariant relative orbits for spacecraft formations. Celestl. Mech. Dyn. Astron. 79, 77–95 (2001)

    Article  ADS  MATH  Google Scholar 

  • Sengupta P., Vadali S.R., Alfriend K.T.: Second-order state transition for relative motion near perturbed, elliptic orbits. Celestl. Mech. Dyn. Astron. 97, 101–129 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Vadali, S.R., Schaub, H., Alfriend, K.T.: Initial conditions and fuel-optimal control for formation flying satellite. In: AIAA GNC Conference, Portland, Oregon, paper no. AIAA, pp. 99–426 (1999)

  • Vadali S., Sengupta P., Yan H., Alfriend K.T.: Fundamental frequencies of satellite relative motion and control of formations. J. Guid. Control Dyn. 31(5), 1239–1248 (2008)

    Article  Google Scholar 

  • Xu M., Xu S.J.: J 2 Invariant relative orbits via differential correction algorithm. Acta Mech. Sin. 23(5), 585–595 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Xu M., Xu S.J.: Nonlinear dynamical analysis for displaced orbits above the planet. Celestl. Mech. Dyn. Astron. 102(4), 327–353 (2008)

    Article  ADS  MATH  Google Scholar 

  • Yan, H., Alfriend, K.: Numerical searches and optimal control of J 2 invariant orbits. In: 16th Annual AAS/AIAA Spaceflight Mechanics Meeting, Tampa, AAS, pp. 06–163 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Wang, Y. & Xu, S. On the existence of J 2 invariant relative orbits from the dynamical system point of view. Celest Mech Dyn Astr 112, 427–444 (2012). https://doi.org/10.1007/s10569-012-9401-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9401-7

Keywords

Navigation