Skip to main content
Log in

Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space ℝd, d = 2 or 3. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary value problem.

We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for d = 2 or 3. Moreover, we prove that the solution is global in time for d = 2 and also for d = 3 if the data are small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold: Ordinary Differential Equations. Springer, Berlin, 1992; translated from the third Russian edition.

    Google Scholar 

  2. C. Conca, J. San Martín, M. Tucsnak: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equations 25 (2000), 1019–1042.

    Article  MATH  Google Scholar 

  3. P. Cumsille, M. Tucsnak: Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle. Math. Methods Appl. Sci. 29 (2006), 595–623.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Desjardins, M. J. Esteban: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999), 59–71.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Farwiq, H. Sohr: The stationary and non-stationary Stokes system in exterior domains with non-zero divergence and non-zero boundary values. Math. Methods Appl. Sci. 17 (1994), 269–291.

    Article  MathSciNet  Google Scholar 

  6. E. Feireisl: On the motion of rigid bodies in a viscous fluid. Appl. Math. 47 (2002), 463–484.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Feireisl: On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167 (2003), 281–308.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. P. Galdi: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. I. Elsevier, Amsterdam, 2002, pp. 653–791.

    Google Scholar 

  9. G. P. Galdi, A. L. Silvestre: Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. Vol. 1. Kluwer/Plenum, New York, 2002, pp. 121–144.

    Google Scholar 

  10. G. P. Galdi, A. L. Silvestre: Strong solutions to the Navier-Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176 (2005), 331–350.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Grandmont, Y. Maday: Existence for an unsteady fluid-structure interaction problem. M2AN, Math. Model. Numer. Anal. 34 (2000), 609–636.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Hartman: Ordinary Differential Equations. Birkhäuser, Boston, 1982.

    MATH  Google Scholar 

  13. J. G. Heywood: The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639–681

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Hishida: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150 (1999), 307–348.

    Article  MATH  MathSciNet  Google Scholar 

  15. K.-H. Hoffmann, V. N. Starovoitov: On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9 (1999), 633–648.

    MATH  MathSciNet  Google Scholar 

  16. A. Inoue, M. Wakimoto: On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 303–319.

    MATH  MathSciNet  Google Scholar 

  17. J.-L. Lions, E. Magenes: Non-homogeneous boundary value problems and applications. Vol. I. Springer, Berlin-Heidelberg-New York, 1972.

    Google Scholar 

  18. J. A. San Martín, V. Starovoitov, M. Tucsnak: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002), 113–147.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Serre: Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4 (1987), 99–110. (In French.)

    Article  MATH  MathSciNet  Google Scholar 

  20. A. L. Silvestre: On the slow motion of a self-propelled rigid body in a viscous incompressible fluid. J. Math. Anal. Appl. 274 (2002), 203–227.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Takahashi: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003), 1499–1532.

    MATH  Google Scholar 

  22. T. Takahashi, M. Tucsnak: Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004), 53–77.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Temam: Navier-Stokes equations. Theory and numerical analysis, 3rd ed., with an appendix by F. Thomasset. North-Holland, Amsterdam-New York-Oxford, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takéo Takahashi.

Additional information

Patricio Cumsille’s research was partially supported by CONICYT-FONDECYT grant (No. 3070040) and Takéo Takahashi’s research was partially supported by Grant (JCJC06 137283) of the Agence Nationale de la Recherche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumsille, P., Takahashi, T. Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czech Math J 58, 961–992 (2008). https://doi.org/10.1007/s10587-008-0063-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-008-0063-2

Keywords

Navigation