Skip to main content
Log in

Stochastic evolution equations driven by Liouville fractional Brownian motion

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of ℒ(H,E)-valued functions with respect to H-cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter 0 < β < 1. For 0 < β < ½ we show that a function Φ: (0, T) → ℒ(H,E) is stochastically integrable with respect to an H-cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an H-cylindrical fractional Brownian motion.

We apply our results to stochastic evolution equations

$$dU(t) = AU(t)dt + B dW_H^\beta (t)$$

driven by an H-cylindrical Liouville fractional Brownian motion, and prove existence, uniqueness and space-time regularity of mild solutions under various assumptions on the Banach space E, the operators A: D(A) → E and B: HE, and the Hurst parameter.

As an application it is shown that second-order parabolic SPDEs on bounded domains in ℝd, driven by space-time noise which is white in space and Liouville fractional in time, admit a mild solution if ¼d < β < 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. V.V. Anh, W.A. Grecksch: A fractional stochastic evolution equation driven by fractional Brownian motion. Monte Carlo Methods Appl. 9 (2003), 189–199.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Alòs, O. Mazet, D. Nualart: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001), 766–801.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Biagini, Y. Hu, B. Øksendal, T. Zhang: Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications. Springer, London, 2008.

    Google Scholar 

  4. Z. Brzeźniak: On stochastic convolutions in Banach spaces and applications. Stochastics Stochastics Rep. 61 (1997), 245–295.

    MathSciNet  MATH  Google Scholar 

  5. Z. Brzeźniak, J. M.A. M. van Neerven: Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43 (2003), 261–303.

    MathSciNet  MATH  Google Scholar 

  6. Z. Brzeźniak, J. Zabczyk: Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise. Potential Anal. 32 (2010), 153–188.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Caithamer: The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise. Stoch. Dyn. 5 (2005), 45–64.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Carmona, J. -P. Fouque, D. Vestal: Interacting particle systems for the computation of rare credit portfolio losses. Finance Stoch. 13 (2009), 613–633.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  10. L. Decreusefond, A. S. Üstünel: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999), 177–214.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Dettweiler, L. Weis, J. M.A. M. van Neerven: Space-time regularity of solutions of the parabolic stochastic Cauchy problem. Stochastic Anal. Appl. 24 (2006), 843–869.

    Article  MATH  Google Scholar 

  12. T.E. Duncan, B. Pasik-Duncan, B. Maslowski: Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch. Dyn. 2 (2002), 225–250.

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Fernique: Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris, Sér. A 270 (1970), 1698–1699. (In French.)

    MathSciNet  MATH  Google Scholar 

  14. D. Feyel, A. de La Pradelle: On fractional Brownian processes. Potential Anal. 10 (1999), 273–288.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Goldys, J. M.A. M. van Neerven: Transition semigroups of Banach space valued Ornstein-Uhlenbeck processes. Acta Appl. Math. 76 (2003), 283–330. Revised version: arXiv:math/0606785.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Grecksch, C. Roth, V.V. Anh: Q-fractional Brownian motion in infinite dimensions with application to fractional Black-Scholes market. Stochastic Anal. Appl. 27 (2009), 149–175.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Guasoni: No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Finance 16 (2006), 569–582.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Gubinelli, A. Lejay, S. Tindel: Young integrals and SPDEs. Potential Anal. 25 (2006), 307–326.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Hairer, A. Ohashi: Ergodic theory for SDEs with extrinsic memory. Ann. Probab. 35 (2007), 1950–1977.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Hu: Heat equations with fractional white noise potentials. Appl. Math. Optimization 43 (2001), 221–243.

    Article  MATH  Google Scholar 

  21. Y. Hu, B. Øksendal, T. Zhang: General fractional multiparameter white noise theory and stochastic partial differential equations. Commun. Partial. Diff. Equations 29 (2004), 1–23.

    Article  MATH  Google Scholar 

  22. G. Jumarie: Would dynamic systems involving human factors be necessarily of fractal nature? Kybernetes 31 (2002), 1050–1058.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Jumarie: New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations. Math. Comput. Modelling 44 (2006), 231–254.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. J. Kalton, J. M.A. M. van Neerven, M. C. Veraar, L. Weis: Embedding vector-valued Besov spaces into spaces of gamma-radonifying operators. Math. Nachr. 281 (2008), 238–252.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. J. Kalton, L. Weis: The H -calculus and square function estimates. In preparation.

  26. W. Leland, M. Taqqu, W. Willinger, D. Wilson: On the self-similar nature of ethernet traffic. IEEE/ACM Trans. Networking 2 (1994), 1–15.

    Article  Google Scholar 

  27. B. B. Mandelbrot, J.W. Van Ness: Fractional Brownian motion, fractional noises, and applications. SIAM Rev. 10 (1968), 422–437.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Maslowski, D. Nualart: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202 (2003), 277–305.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Maslowski, B. Schmalfuss: Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stochastic Anal. Appl. 22 (2004), 1577–1607.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. M. A. M. van Neerven: γ-radonifying operators—a survey. Proceedings CMA 44 (2010), 1–61.

    Google Scholar 

  31. J. M. A. M. van Neerven: Stochastic Evolution Equations. Lecture Notes of the Internet Seminar 2007/08, OpenCourseWare, TU Delft, http://ocw.tudelft.nl.

  32. J. M. A. M. van Neerven, M. C. Veraar, L. Weis: Stochastic integration in UMD Banach spaces. Ann. Probab. 35 (2007), 1438–1478.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. M. A. M. van Neerven, M. C. Veraar, L. Weis: Conditions for stochastic integrability in UMD Banach spaces. Inn: Banach Spaces and their Applications in Analysis: In Honor of Nigel Kalton’s 60th Birthday. De Gruyter Proceedings in Mathematics. Walter De Gruyter, Berlin, 2007, pp. 127–146.

    Google Scholar 

  34. J. M. A. M. van Neerven, M. C. Veraar, L. Weis: Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255 (2008), 940–993.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. M. A. M. van Neerven, L. Weis: Stochastic integration of functions with values in a Banach space. Stud. Math. 166 (2005), 131–170.

    Article  MATH  Google Scholar 

  36. D. Nualart: Fractional Brownian motion: stochastic calculus and applications. In: Proceedings of the International Congress of Mathematicians. Volume III: Invited Lectures, Madrid, Spain, August 22–30, 2006. European Mathematical Society, Zürich, 2006, pp. 1541–1562.

    Google Scholar 

  37. A. Ohashi: Fractional term structure models: no-arbitrage and consistency. Ann. Appl. Probab. 19 (2009), 1553–1580.

    Article  MathSciNet  MATH  Google Scholar 

  38. T.N. Palmer, G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes, T. Jung, M. Leutbecher: Representing model uncertainty in weather and climate prediction. Annu. Rev. Earth Planet. Sci. 33 (2005), 163–193.

    Article  MathSciNet  Google Scholar 

  39. T.N. Palmer: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Q. J. Meteorological Soc. 127 (2001 B), 279–304.

    Google Scholar 

  40. B. Pasik-Duncan, T. E. Duncan, B. Maslowski: Linear stochastic equations in a Hilbert space with a fractional Brownian motion. In: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems. International Series in Operations Research & Management Science. Springer, New York, 2006, pp. 201–221.

    Google Scholar 

  41. A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44. Springer, New York, 1983.

    Google Scholar 

  42. S. G. Samko, A.A. Kilbas, O. I. Marichev: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York, 1993.

    MATH  Google Scholar 

  43. H. Triebel: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Math. Library, vol. 18. North-Holland, Amsterdam, 1978.

    Google Scholar 

  44. S. Tindel, C. A. Tudor, F. Viens: Stochastic evolution equations with fractional Brownian motion. Probab. Theory Relat. Fields 127 (2003), 186–204.

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Weis: Operator-valued Fourier multiplier theorems and maximal L p-regularity. Math. Ann. 319 (2001), 735–758.

    Article  MathSciNet  MATH  Google Scholar 

  46. W. Willinger, M. Taqqu, W.E. Leland, D.V. Wilson: Self-similarity in high speed packet traffic: analysis and modeling of Ethernet traffic measurements. Stat. Sci. 10 (1995), 67–85.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzisław Brzeźniak.

Additional information

The first named author thanks Eurandom for kind hospitality. The second named author gratefully acknowledges financial support by VICI subsidy 639.033.604 of the Netherlands Organization for Scientific Research (NWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzeźniak, Z., van Neerven, J. & Salopek, D. Stochastic evolution equations driven by Liouville fractional Brownian motion. Czech Math J 62, 1–27 (2012). https://doi.org/10.1007/s10587-012-0011-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-012-0011-z

Keywords

MSC 2010

Navigation