Skip to main content
Log in

Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The analysis of the approximate control problems is carried out. The uniform convergence of discretized controls to optimal controls is proven under natural assumptions by taking piecewise constant controls. Finally, error estimates are established and some numerical experiments, which confirm the theoretical results, are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arada, E. Casas, and F. Tröltzsch, “Error estimates for the numerical approximation of a semilinear elliptic control problem,” Computational Optimization and Applications, vol. 23, pp. 201–229, 2002.

    Article  Google Scholar 

  2. V. Arnautu and P. Neittaanmäki, “Discretization estimates for an elliptic control problem,” Numer. Funct. Anal. and Optimiz., vol. 19, pp. 431–464, 1998.

    Google Scholar 

  3. M. Bergounioux, K. Ito, and K. Kunisch, “Primal-dual strategy for constrained optimal control problems,” SIAM J. Control and Optimization, vol. 37, pp. 1176–1194, 1999.

    Article  Google Scholar 

  4. M. Bergounioux and K. Kunisch, “Primal-dual strategy for state-constrained optimal control problems,” Comp. Optim. Appl., vol. 22, pp. 193–224, 2002.

    Article  Google Scholar 

  5. J. Bonnans and H. Zidani, “Optimal control problems with partially polyhedric constraints,” SIAM J. Control Optim., vol. 37, pp. 1726–1741, 1999.

    Article  Google Scholar 

  6. E. Casas and M. Mateos, “Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints,” SIAM J. Control Optim., vol. 40, pp. 1431–1454, 2002.

    Article  Google Scholar 

  7. E. Casas and M. Mateos, “Uniform convergence of the FEM, applications to state constrained control problems,” Comp. Appl. Math., vol. 21, pp. 67–100, 2002.

    MathSciNet  Google Scholar 

  8. E. Casas and F. Tröltzsch, “Error estimates for linear-quadratic elliptic controls problems,” in Analysis and Optimization of Differential Systems, V. Barbu et al. (Eds.), Kluwer Academic Publishers: Boston, 2003, pp. 89–100.

    Google Scholar 

  9. A.L. Dontchev and W.W. Hager, “The Euler approximation in state constrained optimal control,” Math. of Computation, vol. 70, pp. 173–203, 2000.

    Google Scholar 

  10. A.L. Dontchev, W.W. Hager and V. M. Veliòv, “Second-order Runge-Kutta approximations in control constrained optimal control,” SIAM J. Numer. Anal., vol. 38, pp. 202–226, 2000.

    Article  Google Scholar 

  11. F. Falk, “Approximation of a class of optimal control problems with order of convergence estimates,” J. Math. Anal. Appl., vol. 44, pp. 28–47, 1973.

    Article  Google Scholar 

  12. T. Geveci, “On the approximation of the solution of an optimal control problem problem governed by an elliptic equation,” R.A.I.R.O. Analyse Numérique/Numerical Analysis, vol. 13, pp. 313–328, 1979.

    Google Scholar 

  13. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman: Boston-London-Melbourne, 1985.

    Google Scholar 

  14. W.W. Hager, “Multiplier methods for nonlinear optimal control,” SIAM J. Numer. Anal., vol. 27, pp. 1061–1080, 1990.

    Article  Google Scholar 

  15. W.W. Hager, “Numerical analysis in optimal control,” in Optimal Control of Complex Structures. International Series of Numerical Mathematics, Birkhäuser, Basel, vol. 139, pp. 83–93, 2001.

    Google Scholar 

  16. M. Heinkenschloss and F. Tröltzsch, “Analysis of the Lagrange-SQP-Newton method for the control of a phase field equation,” Control and Cybernetics, vol. 28, pp. 178–211, 1999.

    Google Scholar 

  17. M. Hinze, “A variational discretization concept in control constrained optimization: The linear-quadratic case.” To appear in Comp. Optimization and Appl.

  18. D. Jerison and C. Kenig, “The Neumann problem on Lipschitz domains,” Bull. Amer. Math. Soc, vol. 4, pp. 203–207, 1981.

    Google Scholar 

  19. D. Jerison and C. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains,” J. Funct. Anal., vol. 130, pp. 161–219, 1995.

    Article  Google Scholar 

  20. C. Kelley and E. Sachs, “Approximate quasi-Newton methods,” Mathematical Programming, vol. 48, pp. 41–70, 1990.

    Article  Google Scholar 

  21. C. Kenig, “Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems,” vol. 83 of CBMS, American Mathematical Society: Providence, Rhode Island, 1994.

  22. K. Kunisch and E. Sachs, “Reduced SQP-methods for parameter identification problems,” SIAM J. Numer. Anal., vol. 29, pp. 1793–1820, 1992.

    Article  Google Scholar 

  23. K. Kunisch and A. Rösch, “Primal-dual active set strategy for a general class of constrained optimal control problems,” SIAM J. Optimization, vol. 13, pp. 321–334, 2002.

    Article  Google Scholar 

  24. J.L. Lions, Quelques Métodes de Résolution des Problémes aux Limites non Linéaires, Dunod: Paris, 1969.

    Google Scholar 

  25. K. Malanowski, “Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal control problems,” Appl. Math. Optimization, vol. 8, pp. 69–95, 1981.

    Article  Google Scholar 

  26. K. Malanowski, C. Büskens, and H. Maurer, “Convergence of approximations to nonlinear control problems,” in Mathematical Programming with Data Perturbation, A.V. Fiacco (Ed.), Marcel Dekker, Inc.: New York 1997, pp. 253–284.

    Google Scholar 

  27. C. Meyer and A. Rösch, “Superconvergence properties of optimal control problems.” To appear in SIAM J. Control and Optimization.

  28. F. Tröltzsch, “An SQP method for the optimal control of a nonlinear heat equation,” Control and Cybernetics, vol. 23, pp. 267–288, 1994.

    Google Scholar 

  29. A. Unger., “Hinreichende Optimalitätsbedingungen 2. Ordnung und Konvergenz des SQP-Verfahrens für semilineare elliptische Randsteuerprobleme,” PhD thesis, TU Chemnitz-Zwickau, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Casas.

Additional information

The first two authors were supported by Ministerio de Ciencia y Tecnología (Spain). The second author was also supported by the DFG research center “Mathematics for key technologies” (FZT86) in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, E., Mateos, M. & TrÖltzsch, F. Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems. Comput Optim Applic 31, 193–219 (2005). https://doi.org/10.1007/s10589-005-2180-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-005-2180-2

Navigation