Skip to main content
Log in

A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We develop a finite element discretization and multigrid solver for a Darcy–Stokes system of three-dimensional vuggy porous media, i.e., porous media with cavities. The finite element method uses low-order mixed finite elements in the Darcy and Stokes domains and special transition elements near the Darcy–Stokes interface to allow for tangential discontinuities implied by the Beavers–Joseph boundary condition. We design a multigrid method to solve the resulting saddle point linear system. The intertwining of the Darcy and Stokes subdomains makes the resulting matrix highly ill-conditioned. The velocity field is very irregular, and its discontinuous tangential component at the Darcy–Stokes interface makes it difficult to define intergrid transfer operators. Our definition is based on mass conservation and the analysis of the orders of magnitude of the solution. The coarser grid equations are defined using the Galerkin method. A new smoother of Uzawa type is developed based on taking an optimal step in a good search direction. Our algorithm has a measured convergence factor independent of the size of the system, at least when there are no disconnected vugs. We study the macroscopic effective permeability of a vuggy medium, showing that the influence of vug orientation; shape; and, most importantly, interconnectivity determine the macroscopic flow properties of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcouffe, R.E., Brandt, A., Dendy, J.E., Painter, J.W.: The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SISC 2, 430–454 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11, 207–218 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arbogast, T., Brunson, D.S., Bryant, S.L., Jennings, J.W.: A preliminary computational investigation of a macro-model for vuggy porous media. In: Miller, C.T., et al. (eds.) Computational Methods in Water Resources XV. Elsevier, New York (2004)

    Google Scholar 

  4. Arbogast, T., Lehr, H.L.: Homogenization of a Darcy-Stokes system modeling vuggy porous media. Comput. Geosci. 10, 291–302 (2006)

    Article  MathSciNet  Google Scholar 

  5. Arbogast, T., Wheeler, M.F.: A family of rectangular mixed elements with a continuous flux for second order elliptic problems. SIAM J. Numer. Anal. 42, 1914–1931 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  7. Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput. 50, 1–17 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput 31, 333–390 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    MATH  Google Scholar 

  11. Brunson, D.S.: Simulating fluid flow in vuggy porous media. Ph.D. thesis, Department of Mathematics, The University of Texas at Austin, Austin, Texas, August (2005)

  12. Burman, E., Hansbo, P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198, 35–51 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne (2004)

  14. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fortin, M.: Old and new finite elements for incompressible flows. Int. J. Numer. Methods Fluids 1, 347–364 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  Google Scholar 

  17. Gartling, D.K., Hickox, C.E., Givler, R.C.: Simulation of coupled viscous and porous flow problems. Comput. Fluid Dyn. 7, 23–48 (1996)

    Article  MATH  Google Scholar 

  18. Hackbusch, W., Trottenberg, U. (eds.): Multigrid methods II: proceedings of the 2nd European Conference on Multigrid Methods, held at Koln, October 1-4, 1985. Lecture Notes in Mathematics, vol. 1228. Springer, Berlin (1986)

    Google Scholar 

  19. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philol. Soc. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  20. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Raviart, R.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods. Lecture Notes in Math, vol. 606, pp. 292–315. Springer, New York (1977)

    Google Scholar 

  22. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Roberts, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, ch. Finite Element Methods (Part 1), vol. 2, pp. 523–639. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1991)

    Google Scholar 

  24. Ruge, J., Stüben, K.: Algebraic multigrid (amg). In: McCormick, S.F. (ed.) Multigrid Methods. Frontiers in Applied Mathematics, pp. 73–130. SIAM, Philadelphia (1987)

  25. Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)

    Google Scholar 

  26. Salinger, A.G., Aris, R., Derby, J.J.: Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Methods Fluids 18, 1185–1209 (1994)

    Article  MATH  Google Scholar 

  27. Stüben, K.: A review of algebraic multigrid. Numerical analysis 2000, vol. VII, partial differential equations. J. Comput. Appl. Math. 128, 281–309 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic, London (2001)

    MATH  Google Scholar 

  29. Zhang, L.: Multiscale flow and transport in highly heterogeneous carbonates. Ph.D. thesis, Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas, August (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Arbogast.

Additional information

This work was supported by the U.S. National Science Foundation under grants DMS-0074310 and DMS-0417431.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbogast, T., Gomez, M.S.M. A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media. Comput Geosci 13, 331–348 (2009). https://doi.org/10.1007/s10596-008-9121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-008-9121-y

Keywords

Navigation