Skip to main content
Log in

Wieferich pairs and Barker sequences

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show that if a Barker sequence of length n > 13 exists, then either n = 189 260 468 001 034 441 522 766 781 604, or n > 2 · 1030. This improves the lower bound on the length of a long Barker sequence by a factor of more than 107. We also show that all but fewer than 1600 integers n ≤ 4 · 1026 can be eliminated as the order of a circulant Hadamard matrix. These results are obtained by completing extensive searches for Wieferich prime pairs (q, p), which are defined by the relation \({q^{p-1} \equiv1}\) mod p 2, and analyzing their results in combination with a number of arithmetic restrictions on n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker R.H.: Group synchronizing of binary digital systems. In: Jackson, W. (eds) Communication Theory (London, 1952), pp. 273–287. Academic Press, New York (1953)

    Google Scholar 

  2. Baumert L.D.: Cyclic Difference Sets. Lecture Notes in Math., vol. 182. Springer-Verlag (1971) (MR0282863 (44 #97)).

  3. Borwein P., Kaltofen E., Mossinghoff M.J.: Irreducible polynomials and barker sequences. ACM Commun. Comput. Algebra 41(3–4), 118–121 (2007) (MR2404490)

    Article  MathSciNet  Google Scholar 

  4. Borwein P., Mossinghoff M.J.: Barker sequences and flat polynomials. In: McKee J., Smyth C. (eds.) Number Theory and Polynomials (Bristol, U.K., 2006). London Math. Soc. Lecture Note Ser., vol. 352, pp. 71–88. Cambridge Univ. Press (2008).

  5. Brualdi R.A.: A note on multipliers of difference sets. J. Res. Nat. Bur. Stand. Sect. B 69, 87–89 (1965) (MR0184868 (32 #2339))

    MATH  MathSciNet  Google Scholar 

  6. Crandall R., Dilcher K., Pomerance C.: A search for Wieferich and Wilson primes. Math. Comp. 66(217), 433–449 (1997) (MR1372002 (97c:11004))

    Article  MATH  MathSciNet  Google Scholar 

  7. Eliahou S., Kervaire M.: Barker sequences and difference sets. Enseign. Math. (2) 38(3–4), 345–382 (1992). Corrigendum, Enseign. Math. (2) 40(1–2), 109–111 (1994) (MR1189012 (93i:11018)).

  8. Eliahou S., Kervaire M., Saffari B.: A new restriction on the lengths of Golay complementary sequences. J. Combin. Theory Ser. A 55(1), 49–59 (1990) (MR1070014 (91i:11020))

    Article  MATH  MathSciNet  Google Scholar 

  9. Ernvall R., Metsänkylä T.: On the p-divisibility of Fermat quotients. Math. Comp. 66(219), 1353–1365 (1997) (MR1408373 (97i:11003))

    Article  MATH  MathSciNet  Google Scholar 

  10. Fischer R.: Fermat quotients, http://www.fermatquotient.com/FermatQuotienten.

  11. Fredman M.L., Saffari B., Smith B.: Polynômes réciproques: conjecture d’Erdős en norme L 4, taille des autocorrélations et inexistence des codes de Barker. C. R. Acad. Sci. Paris Sér. I Math. 308(15), 461–464 (1989) (MR994692 (90c:42004))

    MATH  MathSciNet  Google Scholar 

  12. GMP: The GNU multiple precision arithmetic library, http://www.swox.com/gmp.

  13. Granville A., Monagan M.B.: The first case of Fermat’s last theorem is true for all prime exponents up to 714,591,416,091,389. Trans. Am. Math. Soc. 306(1), 329–359 (1988) (MR0927694 (89g:11025))

    Article  MATH  MathSciNet  Google Scholar 

  14. Jedwab J., Lloyd S.: A note on the nonexistence of Barker sequences. Des. Codes Cryptogr. 2(1), 93–97 (1992) (MR1157481 (93e:11032))

    Article  MATH  MathSciNet  Google Scholar 

  15. Keller W., Richstein J.: Solutions of the congruence \({a^ {p-1} \equiv1\pmod{p^ r}}\). Math. Comp. 74(250), 927–936 (2005) (MR2114655 (2005i:11004))

    Article  MATH  MathSciNet  Google Scholar 

  16. Knauer J., Richstein J.: The continuing search for Wieferich primes. Math. Comp. 74(251), 1559–1563 (2005) (MR2137018 (2006a:11006))

    Article  MATH  MathSciNet  Google Scholar 

  17. Lehmer D.H.: On Fermat’s quotient, base two. Math. Comp. 36(153), 289–290 (1981) (MR595064 (82e:10004))

    Article  MATH  MathSciNet  Google Scholar 

  18. Leung K.H., Schmidt B.: The field descent method. Des. Codes Cryptogr. 36(2), 171–188 (2005) (MR2211106 (2007g:05023))

    Article  MATH  MathSciNet  Google Scholar 

  19. Mihăilescu P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572, 167–195 (2004) (MR2076124 (2005f:11051))

    MATH  MathSciNet  Google Scholar 

  20. Mihăilescu P.: A class number free criterion for Catalan’s conjecture. J. Number Theory 99(2), 225–231 (2003) (MR1968450 (2004b:11040))

    Article  MATH  MathSciNet  Google Scholar 

  21. Montgomery P.L.: New solutions of \({a^ {p-1} \equiv 1\pmod {p^2}}\). Math. Comp. 61(203), 361–363 (1993) (MR1182246 (94d:11003))

    Article  MATH  MathSciNet  Google Scholar 

  22. Mossinghoff M.J.: Wieferich prime pairs, Barker sequences, and circulant Hadamard matrices (2009). http://www.cecm.sfu.ca/~mjm/WieferichBarker.

  23. Nielsen P.P.: Odd perfect numbers have at least nine distinct prime factors. Math. Comp. 76(260), 2109–2126 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ryser H.J.: Combinatorial Mathematics. Carus Math. Monogr., vol. 14. Math. Assoc. Am. (1963) (MR0150048 (27 #51)).

  25. Schmidt B.: Cyclotomic integers and finite geometry. J. Amer. Math. Soc. 12(4), 929–952 (1999) (MR1671453 (2000a:05042))

    Article  MATH  MathSciNet  Google Scholar 

  26. Schmidt B.: Characters and Cyclotomic Fields in Finite Geometry. Lecture Notes in Math., vol. 1797. Springer-Verlag (2002) (MR1943360 (2004a:05028)).

  27. Tarjan R.: Enumeration of the elementary circuits of a directed graph. SIAM J. Comput. 2, 211–216 (1973) (MR0325448 (48 #3795))

    Article  MATH  MathSciNet  Google Scholar 

  28. Turyn R.: Character sums and difference sets. Pacific J. Math. 15, 319–346 (1965) (MR0179098 (31 #3349))

    MATH  MathSciNet  Google Scholar 

  29. Turyn R.: Sequences with small correlation. In: Mann, H.B. (eds) Error Correcting Codes (Madison, WI, 1968), pp. 195–228. Wiley, New York (1968) (MR0242566 (39 #3897))

    Google Scholar 

  30. Turyn R., Storer J.: On binary sequences. Proc. Am. Math. Soc. 12, 394–399 (1961) (MR0125026 (23 #A2333))

    Article  MATH  MathSciNet  Google Scholar 

  31. Wieferich A.: Zum letzten Fermat’schen theorem. J. Reine Angew. Math. 136, 293–302 (1909)

    MATH  Google Scholar 

  32. Wieferich@Home (2009). http://www.elmath.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Mossinghoff.

Additional information

Communicated by Jonathan Jedwab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mossinghoff, M.J. Wieferich pairs and Barker sequences. Des. Codes Cryptogr. 53, 149–163 (2009). https://doi.org/10.1007/s10623-009-9301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9301-3

Keywords

Mathematics Subject Classifications (2000)

Navigation