Skip to main content
Log in

Convergence of Peridynamics to Classical Elasticity Theory

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The peridynamic model of solid mechanics is a nonlocal theory containing a length scale. It is based on direct interactions between points in a continuum separated from each other by a finite distance. The maximum interaction distance provides a length scale for the material model. This paper addresses the question of whether the peridynamic model for an elastic material reproduces the classical local model as this length scale goes to zero. We show that if the motion, constitutive model, and any nonhomogeneities are sufficiently smooth, then the peridynamic stress tensor converges in this limit to a Piola-Kirchhoff stress tensor that is a function only of the local deformation gradient tensor, as in the classical theory. This limiting Piola-Kirchhoff stress tensor field is differentiable, and its divergence represents the force density due to internal forces. The limiting, or collapsed, stress-strain model satisfies the conditions in the classical theory for angular momentum balance, isotropy, objectivity, and hyperelasticity, provided the original peridynamic constitutive model satisfies the appropriate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lehoucq, R.B., Silling, S.A.: Statistical coarse-graining of molecular dynamics into peridynamics. Report SAND2007-6410, Sandia National Laboratories, Albuquerque, New Mexico (2007)

  4. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  5. Emmrich, E., Weckner, O.: Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity. Math. Mech. Solids 12, 363–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Silling, S.A., Bobaru, F.: Peridynamic modeling of membranes and fibers. Int. J. Nonlinear Mech. 40, 395–409 (2005)

    Article  MATH  ADS  Google Scholar 

  7. Bobaru, F.: Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Model. Simul. Mat. Sci. Eng. 15, 397–417 (2007)

    Article  ADS  Google Scholar 

  8. Bazant, Z.P., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Article  Google Scholar 

  9. Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)

    Article  Google Scholar 

  10. Truesdell, C.: A First Course in Rational Continuum Mechanics. Volume I: General Concepts. Academic, New York (1977), pp. 120–121

    Google Scholar 

  11. Giessibl, F.J.: Atomic resolution of the silicon (111)-(7×7) surface by atomic force microsopy. Science 267, 68–71 (1995)

    Article  ADS  Google Scholar 

  12. Kuo, S.C., Sheetz, M.P.: Force of single kinesin molecules measured with optical tweezers. Science 260, 232–234 (1993)

    Article  ADS  Google Scholar 

  13. Block, S.M.: Making light work with optical tweezers. Nature 360, 493–495 (1992)

    Article  ADS  Google Scholar 

  14. Maranganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504-1–195504-4 (2007)

    ADS  Google Scholar 

  15. Israelachvili, J.: Intermolecular and Surface Forces. Academic, New York (1992), pp. 155–157, 177

    Google Scholar 

  16. Abraham, F.F., Brodbeck, D., Rafey, R.A., Rudge, W.E.: Instability dynamics of fracture: A computer simulation investigation. Phys. Rev. Lett. 73, 272–275 (1994)

    Article  ADS  Google Scholar 

  17. Eringen, A.C., Speziale, C.G., Kim, B.S.: Crack-tip problem in non-local elasticity. J. Mech. Phys. Solids 25, 339–355 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Irving, J.H., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  19. Noll, W.: Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik. J. Ration. Mech. Anal. 4, 627–646 (1955)

    MathSciNet  Google Scholar 

  20. Hardy, R.J.: Formulas for determining local properties in molecular-dynamics simulations: Shock waves. J. Chem. Phys. 76, 622–628 (1982)

    Article  ADS  Google Scholar 

  21. Murdoch, A.I.: On the microscopic interpretation of stress and couple stress. J. Elast. 71, 105–131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zimmermann, M.: A continuum theory with long-range forces for solids. Ph.D. thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering (2005)

  23. Emmrich, E., Weckner, O.: On the well posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)

    MATH  MathSciNet  Google Scholar 

  24. Lehoucq, R.B., Silling, S.A.: Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56, 1566–1577 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  26. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Article  Google Scholar 

  27. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  ADS  Google Scholar 

  28. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic, New York (1981), pp. 165–180

    MATH  Google Scholar 

  29. Abeyaratne, R.: An admissibility condition for equilibrium shocks in finite elasticity. J. Elast. 13, 175–184 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Howison, S.D., Ockendon, J.R.: Singularity development in moving-boundary problems. Q. J. Mech. Appl. Math. 38, 343–359 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sahu, S.K., Das, P.K., Bhattacharyya, S.: Rewetting analysis of hot surfaces with internal heat source by the heat balance integral method. Heat Mass Transf. (2007). doi:10.1007/s00231-007-0360-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Silling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silling, S.A., Lehoucq, R.B. Convergence of Peridynamics to Classical Elasticity Theory. J Elasticity 93, 13–37 (2008). https://doi.org/10.1007/s10659-008-9163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-008-9163-3

Keywords

Mathematics Subject Classification (2000)

Navigation