Skip to main content
Log in

Computation of fluxes of conservation laws

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The direct method for the construction of local conservation laws of partial differential equations (PDE) is a systematic method applicable to a wide class of PDE systems (S. Anco and G. Bluman, Eur J Appl Math 13:567–585, 2002). According to the direct method one seeks multipliers, such that the linear combination of PDEs of a given system with these multipliers yields a divergence expression. Once local-conservation-law multipliers have been found, one needs to reconstruct the fluxes of the conservation law. In this review paper, common methods of flux computation are discussed, compared, and illustrated by examples. An implementation of these methods in symbolic software is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lax PD (1968) Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math 21: 467–490

    Article  MATH  MathSciNet  Google Scholar 

  2. Benjamin TB (1972) The stability of solitary waves. Proc R Soc Lond A 328: 153–183

    Article  MathSciNet  ADS  Google Scholar 

  3. Knops RJ, Stuart CA (1984) Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity. Arch Ration Mech Anal 86: 234–249

    Article  MathSciNet  Google Scholar 

  4. LeVeque RJ (1992) Numerical methods for conservation laws. Birkhäuser, Basel

    MATH  Google Scholar 

  5. Godlewski E, Raviart P-A (1996) Numerical approximation of hyperbolic systems of conservation laws. Springer, Berlin

    MATH  Google Scholar 

  6. Bluman G, Kumei S (1987) On invariance properties of the wave equation. J Math Phys 28: 307–318

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bluman G, Kumei S, Reid G (1988) New classes of symmetries for partial differential equations. J Math Phys 29: 806–811

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Bluman G, Cheviakov AF (2005) Framework for potential systems and nonlocal symmetries: algorithmic approach. J Math Phys 46: 123506

    Article  MathSciNet  ADS  Google Scholar 

  9. Bluman G, Cheviakov AF, Ivanova NM (2006) Framework for nonlocally related PDE systems and nonlocal symmetries: extension simplification and examples. J Math Phys 47: 113505

    Article  MathSciNet  ADS  Google Scholar 

  10. Sjöberg A, Mahomed FM (2004) Non-local symmetries and conservation laws for one-dimensional gas dynamics equations. Appl Math Comput 150: 379–397

    Article  MATH  MathSciNet  Google Scholar 

  11. Akhatov S, Gazizov R, Ibragimov N (1991) Nonlocal symmetries. Heuristic approach. J Sov Math 55: 1401–1450

    Article  Google Scholar 

  12. Anco SC, Bluman GW, Wolf T (2008) Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws. Acta Appl Math 101: 21–38

    Article  MATH  MathSciNet  Google Scholar 

  13. Noether E (1918) Invariante Variationsprobleme. Nachr König Gesell Wissen Göttingen, Math-Phys Kl 235–257

  14. Bluman G (2005) Connections between symmetries and conservation laws. Symm Integr Geom: Meth Appl (SIGMA) 1:011, 16 pages

    Google Scholar 

  15. Wolf T (2002) A comparison of four approaches to the calculation of conservation laws. Eur J Appl Math 13(2): 129–152

    Article  MATH  Google Scholar 

  16. Anco S, Bluman G (1997) Direct construction of conservation laws. Phys Rev Lett 78: 2869–2873

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Anco S, Bluman G (2002) Direct construction method for conservation laws of partial differential equations Part II: general treatment. Eur J Appl Math 13: 567–585

    MATH  MathSciNet  Google Scholar 

  18. Bluman G, Cheviakov AF, Anco S (2009) Construction of conservation laws: how the direct method generalizes Noether’s theorem. In: Proceedings of 4th workshop group analysis of differential equations & integrability (to appear)

  19. Hereman W, Colagrosso M, Sayers R, Ringler A, Deconinck B, Nivala M, Hickman MS (2005) Continuous and discrete homotopy operators and the computation of conservation laws. In: Wang D, Zheng Z (eds) Differential equations with symbolic computation. Birkhäuser Verlag, Boston, pp 249–285

    Google Scholar 

  20. Anco S (2003) Conservation laws of scaling-invariant field equations. J Phys A: Math Gen 36: 8623–8638

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Bluman GW, Cheviakov AF, Anco SC (2009) Advanced symmetry methods for partial differential equations. Appl Math Sci ser (to appear)

  22. Cheviakov AF (2007) GeM software package for computation of symmetries and conservation laws of differential equations. Comput Phys Commun 176(1):48–61. (In the current paper, we used a new version of GeM software, which is scheduled for public release in 2009. See http://math.usask.ca/~cheviakov/gem/)

    Google Scholar 

  23. Wolf T (2002) Crack, LiePDE, ApplySym and ConLaw, section 4.3.5 and computer program on CD-ROM. In: Grabmeier J, Kaltofen E, Weispfenning V (eds) Computer algebra handbook. Springer, Berlin, pp 465–468

    Google Scholar 

  24. Hereman W, TransPDEDensityFlux.m, PDEMultiDimDensityFlux.m, and DDEDensityFlux.m: Mathematica packages for the symbolic computation of conservation laws of partial differential equations and differential-difference equations. Available from the software section at http://www.mines.edu/fs_home/whereman/

  25. Deconinck B, Nivala M (2008) Symbolic integration using homotopy methods. Preprint, Department of Applied Mathematics, University of Washington, Seattle, WA 98195-2420. Math Comput Simul (in press)

  26. Deconinck B, Nivala M Maple software for the symbolic computation of conservation laws of (1 + 1)-dimensional partial differential equations. http://www.amath.washington.edu/~bernard/papers.html

  27. Olver PJ (1983) Conservation laws and null divergences. Math Proc Camb Phil Soc 94: 529–540

    Article  MATH  MathSciNet  Google Scholar 

  28. Oberlack M, Wenzel H, Peters N (2001) On symmetries and averaging of the G-equation for premixed combustion. Combust Theor Model 5: 363–383

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Oberlack M, Cheviakov AF (2009) Higher-order symmetries and conservation laws of the G-equation for premixed combustion and resulting numerical schemes. J Eng Math (Submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei F. Cheviakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheviakov, A.F. Computation of fluxes of conservation laws. J Eng Math 66, 153–173 (2010). https://doi.org/10.1007/s10665-009-9307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9307-x

Keywords

Navigation