Skip to main content
Log in

On Degrees of Growth of Finitely Generated Groups

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We prove that for an arbitrary function ρ of subexponential growth there exists a group G of intermediate growth whose growth function satisfies the inequality v G,S (n) ⩾ ρ(n) for all n. For every prime p, one can take G to be a p-group; one can also take a torsion-free group G. We also discuss some generalizations of this assertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Erschler, Ann. of Math., 160, No.3, 1183–1210 (2004).

    Article  MathSciNet  Google Scholar 

  2. R. I. Grigorchuk, Funkts. Anal. Prilozhen., 14, No.1, 53–54 (1980); English transl.: Funct. Anal. Appl., 14, No. 1, 41–43 (1980).

    MathSciNet  MATH  Google Scholar 

  3. R. I. Grigorchuk, Izv. Akad. Nauk SSSR Ser. Mat., 48, No.5, 939–985 (1984); English transl.: Math. USSR Izv., 25, No. 2, 259–300 (1985).

    MathSciNet  Google Scholar 

  4. R. I. Grigorchuk, Mat. Sb., 126(168), No. 2, 194–214 (1985); English transl.: Math. USSR Sb., 54, No. 1, 185–205 (1986).

    MathSciNet  MATH  Google Scholar 

  5. R. I. Grigorchuk, Growth Functions of Finitely Generated Groups and Their Applications [in Russian], D.Sc. Thesis, Steklov Mathematical Institute, Moscow, 1985.

    Google Scholar 

  6. R. I. Grigorchuk and P. F. Kurchanov, In: Itogi Nauki I Tekhniki, Current Problems in Mathematics, Fundamental Directions [in Russian], Vol. 58, VINITI, Moscow, 1990, pp. 191–256; English transl. in: Algebra VII, Combinatorial Group Theory, Applications of Geometry, Encycl. Math. Sci., Vol. 58, Springer-Verlag, New York, 1993, pp. 167–232.

    Google Scholar 

  7. M. Gromov, Publ. Math. Inst. Hautes Etudes Sci., 53, 53–73 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. de la Harpe, Topics in Geometric Group Theory, University of Chicago Press, Chicago, 2000.

    MATH  Google Scholar 

  9. J. J. Milnor, J. Differential Geom., 2, 447–449 (1968).

    MathSciNet  MATH  Google Scholar 

  10. L. Shneyerson, Polynomial Growth in Semigroup Varieties, presented at “International Conference on Group Theory: Combinatorial, Geometric, and Dynamical Aspects of Infinite Groups”, Gaeta, Italy, June 1–6, 2003.

  11. J. J. Tits, J. Algebra, 20, 250–270 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. A. Wolf, J. Differential Geom., 2, 421–446 (1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 39, No. 4, pp. 86–89, 2005

Original Russian Text Copyright © by A. G. Erschler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erschler, A.G. On Degrees of Growth of Finitely Generated Groups. Funct Anal Its Appl 39, 317–320 (2005). https://doi.org/10.1007/s10688-005-0055-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-005-0055-z

Key words

Navigation