Skip to main content
Log in

Complementarity in Categorical Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We relate notions of complementarity in three layers of quantum mechanics: (i) von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a more general categorical perspective of which the above are instances, we consider dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and (iii) become subobject lattices. By developing a ‘point-free’ definition of copyability we link (i) commutative von Neumann subalgebras, (ii) classical structures, and (iii) Boolean subalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Coecke, B.: Categorical quantum mechanics. In: Handbook of Quantum Logic and Quantum Structures: Quantum Logic, pp. 261–324. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  2. Abramsky, S., Heunen, C.: H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics. In: Clifford Lectures, AMS Proceedings of Symposia in Applied Mathematics (2011)

    Google Scholar 

  3. Butterfield, J., Isham, C.J.: A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations. Int. J. Theor. Phys. 37(11), 2669–2733 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coecke, B., Duncan, R.: Interacting quantum observables: Categorical algebra and diagrammatics. In: Automata, Languages and Programming, ICALP 2008. Lecture Notes in Computer Science, vol. 5126, pp. 298–310. Springer, Berlin (2008)

    Chapter  Google Scholar 

  5. Coecke, B., Pavlović, D.: Quantum measurements without sums. In: Mathematics of Quantum Computing and Technology. Taylor & Francis, London (2007)

    Google Scholar 

  6. Coecke, B., Pavlović, D., Vicary, J.: A new description of orthogonal bases. In: Mathematical Structures in Computer Science (2009)

    Google Scholar 

  7. Coecke, B., Paquette, É.O., Pavlović, D.: Classical and quantum structuralism. In: Semantic Techniques in Quantum Computation, pp. 29–70. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  8. Döring, A., Isham, C.J.: ‘What is a thing?’: Topos theory in the foundations of physics. In: New Structures for Physics. Lecture Notes in Physics. Springer, Berlin (2009)

    Google Scholar 

  9. Held, C.: The meaning of complementarity. Stud. Hist. Philos. Sci. Part A 25, 871–893 (1994)

    Article  Google Scholar 

  10. Heunen, C., Jacobs, B.: Quantum logic in dagger kernel categories. Order 27(2), 177–212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heunen, C., Landsman, N.P., Spitters, B.: Bohrification. In: Deep Beauty. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  12. Kalmbach, G.: Orthomodular Lattices. Academic Press, New York (1983)

    MATH  Google Scholar 

  13. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  14. Kock, J.: Frobenius Algebras and 2-D Topological Quantum Field Theories. London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  15. Landsman, N.P.: Between classical and quantum. In: Handbook of the Philosophy of Science, vol. 2: Philosophy of Physics, pp. 417–554. North-Holland, Amsterdam (2007)

    Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Parthasarathy, K.R.: On estimating the state of a finite level quantum system. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7, 607–617 (2006)

    Article  Google Scholar 

  18. Pavlović, D.: Quantum and classical structures in nondeterministic computation. In: Bruza, P., et al. (ed.) Third International Symposium on Quantum Interaction. Lecture Notes in Artificial Intelligence, vol. 5494, pp. 143–157. Springer, Berlin (2009)

    Google Scholar 

  19. Petz, D.: Complementarity in quantum systems. Rep. Math. Phys. 59(2), 209–224 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Piron, C.: Foundations of Quantum Physics. Mathematical Physics Monographs, vol. 19. Benjamin, Elmsford (1976)

    MATH  Google Scholar 

  21. Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  22. Scheibe, E.: The Logical Analysis of Quantum Mechanics. Pergamon, Elmsford (1973)

    Google Scholar 

  23. Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics. Lecture Notes in Physics. Springer, Berlin (2010)

    Google Scholar 

  24. Strocchi, F.: Elements of Quantum Mechanics of Infinite Systems. World Scientific, Singapore (1985)

    Google Scholar 

  25. van den Berg, B., Heunen, C.: Noncommutativity as a colimit. In: Applied Categorical Structures (2010)

    Google Scholar 

  26. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Heunen.

Additional information

Supported by the Netherlands Organisation for Scientific Research (NWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heunen, C. Complementarity in Categorical Quantum Mechanics. Found Phys 42, 856–873 (2012). https://doi.org/10.1007/s10701-011-9585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9585-9

Keywords

Navigation