Skip to main content
Log in

Notes on a paper of Mess

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

These notes are a companion to the preceding paper by Geoffrey Mess, “Lorentz spacetimes of constant curvature”. Mess’ paper was written nearly 20 years ago and so we hope these notes will be useful as a guide to the literature that has appeared in the intervening years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åminneborg S., Bengtsson I., Brill D.R., Holst S., Peldán P. (1998). Black holes and wormholes in 2 + 1 dimensions. Class. Quantum Grav. 15(3): 627–644

    Article  MATH  Google Scholar 

  2. Åminneborg S., Bengtsson I., Holst S. (1999). A spinning anti-de Sitter wormhole. Class. Quantum Grav. 16(2): 363–382

    Article  MATH  Google Scholar 

  3. Åminneborg S., Bengtsson I., Holst S., Peldán P. (1996). Making anti-de Sitter black holes. Class. Quantum Grav. 13(10): 2707–2714

    Article  MATH  Google Scholar 

  4. Andersson L. (2002). Constant mean curvature foliations of flat space-times. Comm. Anal. Geom. 10(5): 1125–1150

    MATH  MathSciNet  Google Scholar 

  5. Andersson L. (2004). The global existence problem in general relativity. In: Chruściel, P.T., Friedrich, H. (eds) The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp 71–120. Birkhäuser, Boston-Basel-Berlin

    Google Scholar 

  6. Andersson L. (2005) Constant mean curvature foliations of simplicial flat spacetimes. Comm. Anal. Geom. 13(5), 963–979

    MATH  MathSciNet  Google Scholar 

  7. Andersson L., Galloway G.J., Howard R. (1998). The cosmological time function. Class. Quantum Grav. 15(2): 309–322

    Article  MATH  MathSciNet  Google Scholar 

  8. Andersson L., Galloway G.J., Howard R. (1998). A strong maximum principle for weak solutions of quasi-linear elliptic equations with applications to Lorentzian and Riemannian geometry. Comm. Pure Appl. Math. 51(6): 581–624

    Article  MathSciNet  Google Scholar 

  9. Andersson L., Moncrief V., Tromba A.J. (1997). On the global evolution problem in 2 + 1 gravity. J. Geom. Phys. 23(3): 191–205

    Article  MATH  MathSciNet  Google Scholar 

  10. Apanasov, B.N.: Nontriviality of Teichmüller space for Kleinian group in space. Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference (I. Kra and B. Maskit eds.), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, 1981, pp. 21–31

  11. Apanasov B.N. (1988). The geometry of Nielsen’s hull for a Kleinian group in space and quasi-conformal mappings. Ann. Global Anal. Geom. 6(3): 207–230

    Article  MATH  MathSciNet  Google Scholar 

  12. Auslander L. (1963). On radicals of discrete subgroups of Lie groups. Amer. J. Math. 85(2): 145–150

    Article  MATH  MathSciNet  Google Scholar 

  13. Bañados M., Henneaux M., Teitelboim C., Zanelli J. (1993). Geometry of the 2 + 1 black hole. Phys. Rev. D 48(4): 1506–1525

    Article  MathSciNet  Google Scholar 

  14. Bañados M., Teitelboim C., Zanelli J. (1992). Black hole in three-dimensional spacetime. Phys. Rev. Lett. 69(13): 1849–1851

    Article  MATH  MathSciNet  Google Scholar 

  15. Barbot, T.: Causal properties of AdS-isometry groups, I: Causal actions and limit sets. (2005) arXiv:math.GT/0509552

  16. Barbot, T.: Causal properties of AdS-isometry groups, II: BTZ multi black-holes. (2005) arXiv:math.GT/0510065

  17. Barbot T. (2005). Globally hyperbolic flat space-times. J. Geom. Phys. 53(2): 123–165

    Article  MATH  MathSciNet  Google Scholar 

  18. Barbot T., Béguin F., Zeghib A. (2003). Feuilletages des espaces temps globalement hyperboliques par des hypersurfaces à courbure moyenne constante. C. R. Acad. Sci. Paris Sér. I Math. 336(3): 245–250

    MATH  Google Scholar 

  19. Barbot, T., Béguin, F., Zeghib, A.: Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS3. To appear in Geom. Dedicata, this issue (2005)

  20. Barbot T., Zeghib A. (2004). Group actions on Lorentz spaces, mathematical aspects: a survey. In: Chruściel, P.T., Friedrich, H. (eds) The Einstein equations and the Large Scale Behavior of Gravitational Fields, pp 401–439. Birkhäuser, Boston-Basel-Berlin

    Google Scholar 

  21. Baseilhac S., Benedetti R. (2004). Quantum hyperbolic invariants of 3-manifolds with PSL\((2,{\mathbb{C}})\)-characters. Topology 43(6): 1373–1423

    Article  MATH  MathSciNet  Google Scholar 

  22. Baseilhac S., Benedetti R. (2005). Classical and quantum dilogarithmic invariants of flat PSL\(s(2,{\mathbb{C}})\)-bundles over 3-manifolds. Geom. Topol. 9: 493–569

    Article  MATH  MathSciNet  Google Scholar 

  23. Baseilhac S., Benedetti R. (2007). Quantum hyperbolic geometry. Algebr. Geom. Topol. 7: 845–917

    Article  MATH  MathSciNet  Google Scholar 

  24. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry, 2 ed., Monogr. Textbooks Pure Appl. Math, vol. 202, Marcel Dekker, Inc., New York (1996)

  25. Benedetti, R., Bonsante, F.: Canonical Wick rotations in 3-dimensional gravity. Mem. Amer. Math. Soc. (2005) arXiv:math.DG/0508485. To appear

  26. Benedetti R., Guadagnini E. (2001). Cosmological time in (2 + 1)-gravity. Nuclear Phys. B 613: 330–352

    Article  MATH  MathSciNet  Google Scholar 

  27. Bernal A.N., Sánchez M. (2003). On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Comm. Math. Phys. 243(3): 461–470

    Article  MATH  MathSciNet  Google Scholar 

  28. Bernal, A.N., Sánchez, M.: Smooth globally hyperbolic splittings and temporal functions. (2004) arXiv:gr-qc/0404084

  29. Bernal A.N., Sánchez M. (2005). Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Comm. Math. Phys. 257(1): 43–50

    Article  MATH  MathSciNet  Google Scholar 

  30. Bonahon F. (1996). Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form. Ann. Fac. Sci. Toulouse Math. 5(2): 233–297

    MATH  MathSciNet  Google Scholar 

  31. Bonahon F. (2005). Kleinian groups which are almost Fuchsian. J. Reine Angew. Math. 587: 1–15

    MATH  MathSciNet  Google Scholar 

  32. Bonahon, F., Liu, X.: Representations of the quantum Teichmüller space, and invariants of surface diffeomorphisms. (2004) arXiv:math.GT/0407086

  33. Bonahon F., Otal J.P. (2004). Laminations measurées de plissage des variétés hyperboliques de dimension 3. Ann. of Math. (2) 160(3): 1013–1055

    Article  MathSciNet  Google Scholar 

  34. Bonsante F. (2005). Flat spacetimes with compact hyperbolic Cauchy surfaces. J. Differential Geom. 69(3): 441–521

    MATH  MathSciNet  Google Scholar 

  35. Bonsante, F.: Measured geodesic lamination on straight convex sets and regular domains in Minkowski space. (2006) In preparation

  36. Bonsante, F., Krasnov, K., Schlenker, J.-M.: Multi black holes and earthquakes on Riemann surfaces with boundaries. (2006) arXiv:math.GT/0610429

  37. Bonsante, F., Schlenker, J.-M.: AdS manifolds with particles and earthquakes on singular surfaces. (2006) arXiv:math.GT/0609116

  38. Brill D.R. (1996). Multi-black-hole geometries in (2 + 1)-dimensional gravity. Phys. Rev. D 53(8): 4133–4137

    Article  MathSciNet  Google Scholar 

  39. Brill D.R. (2000). Black holes and wormholes in 2 + 1 dimensions, Mathematical and quantum aspects of relativity and cosmology. In: Cotsakis, S., Gibbons, G.W. (eds) Lecture Notes in Physics, Vol. 537, pp 143–179. Springer-Verlag, New York-Berlin-Heidelberg

    Google Scholar 

  40. Bromberg K. (2004). Hyperbolic cone-manifolds, short geodesics and Schwarzian derivatives. J. Amer. Math. Soc. 17(4): 783–826

    Article  MATH  MathSciNet  Google Scholar 

  41. Burger, M., Iozzi, A., Labourie, F., Wienhard, A.: Maximal representations of surface groups: symplectic Anosov structures. Pure Appl. Math. Q. 1(3), 543–590 (2005)

    Google Scholar 

  42. Carlip S. (1998). Quantum Gravity in 2 + 1 Dimensions. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  43. Carrière Y. (1989). Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math. 95(3): 615–628

    Article  MATH  Google Scholar 

  44. Choquet-Bruhat Y., Geroch R.P. (1969). Global aspects of the Cauchy problem in General Relativity. Comm. Math. Phys. 14: 329–335

    Article  MATH  MathSciNet  Google Scholar 

  45. Drumm T.A. (1992). Fundamental polyhedra for Margulis space-times. Topology 31(4): 677–683

    Article  MATH  MathSciNet  Google Scholar 

  46. Drumm T.A., Goldman W.M. (1990). Complete flat Lorentz 3-manifolds with free fundamental group. Israel J. Math. 1(2): 149–161

    MATH  MathSciNet  Google Scholar 

  47. Epstein D.B.A., Marden A. (1987). Convex hulls in hyperbolic space, a theorem of Sullivan and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space. In: Epstein, D.B.A. (eds) London Mathematical Society Lecture Note Series Vol 111, pp 113–254. Cambridge Univ. Press, Cambridge

    Google Scholar 

  48. Fock V.V., Chekhov L.O. (1999). Quantum Teichmüller spaces. Theoret. Math. Phys. 120(3): 1245–1259

    Article  MATH  Google Scholar 

  49. Fock, V.V., Goncharov, A.B.: Dual Teichmüller and lamination spaces. (2005) arXiv:math.DG/0510312

  50. Fourès-Bruhat Y. (1952). Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta. Math. 88: 141–225

    Article  MATH  MathSciNet  Google Scholar 

  51. Fried D.L., Goldman W.M. (1983). Three-dimensional affine crystallographic groups. Adv. Math. 47(1): 1–49

    Article  MATH  MathSciNet  Google Scholar 

  52. Gallo D.M. (1989). Prescribed holonomy for projective structures on compact surfaces. Bull. Amer. Math. Soc. (N.S.) 20(1): 31–34

    Article  MATH  MathSciNet  Google Scholar 

  53. Gallo D.M., Kapovich M.È., Marden A. (2000). The monodromy groups of Schwarzian equations on closed Riemann surfaces. Ann. of Math. (2) 151(2): 625–704

    Article  MATH  MathSciNet  Google Scholar 

  54. Garfinkle D., Harris S.G. (1997). Ricci fall-off in static and stationary, globally hyperbolic, non-singular spacetimes. Class. Quantum Grav. 14(1): 139–151

    Article  MATH  MathSciNet  Google Scholar 

  55. Gerhardt C. (1983). H-surfaces in Lorentzian manifolds. Comm. Math. Phys. 89(4): 523–553

    Article  MATH  MathSciNet  Google Scholar 

  56. Geroch R.P. (1970). Domain of dependence. J. Math. Phys. 11(2): 437–449

    Article  MATH  MathSciNet  Google Scholar 

  57. Goldman W.M. (1987). Projective structures with Fuchsian holonomy. J. Differential Geom. 25(3): 297–326

    MATH  MathSciNet  Google Scholar 

  58. Goldman W.M. (1988). Topological components of spaces of representations. Invent. Math. 93(3): 557–607

    Article  MATH  MathSciNet  Google Scholar 

  59. Goldman ,W.M., Margulis, G.A.: Flat Lorentz 3-manifolds and cocompact Fuchsian groups. Crystallographic groups and their generalizations. Contemp. Math., Vol. 262, pp. 135–145, Amer. Math. Soc., Providence (2000)

  60. Harris S.G. (1987). Complete codimension-one spacelike immersions. Class. Quantum Grav. 4(6): 1577–1585

    Article  MATH  Google Scholar 

  61. Harris S.G., Low R.J. (2001). Causal monotonicity, omniscient foliations and the shape of space. Class. Quantum Grav. 18(1): 27–43

    Article  MATH  MathSciNet  Google Scholar 

  62. Hawking S.W., Ellis G.F.R. (1973). The Large Scale Structure of Space-Time. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  63. Hejhal D.A. (1975). Monodromy groups and linearly polymorphic functions. Acta Math. 135: 1–55

    Article  MATH  MathSciNet  Google Scholar 

  64. Ishibashi A., Koike T., Siino M., Kojima S. (1996). Compact hyperbolic universe and singularities. Phys. Rev. D 54(12): 7303–7310

    Article  MathSciNet  Google Scholar 

  65. Kamishima Y., Tan S.P. (1992). Deformation spaces on geometric structures. In: Aspectsoflow-dimensional manifolds Matsumoto, Y., Morita, S. (eds) Advanced Studies in Pure Mathematics, pp 263–299. Kinokuniya, Tokyo

  66. Kashaev R.M. (1998). Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys. 43(2): 105–115

    Article  MATH  MathSciNet  Google Scholar 

  67. Klingler B. (1996). Complétude des variétés Lorentziennes à courbure constante. Math. Ann. 306(2): 353–370

    Article  MATH  MathSciNet  Google Scholar 

  68. Kobayashi S., Nomizu, K.: Foundations of Differential Geometry, 1 ed., Vol. 1. Wiley, New York (1963)

  69. Krasnov, K., Schlenker, J.-M.: Minimal surfaces and particles in 3-manifolds. (2005) arXiv:math.DG/0511441

  70. Kulkarni R.S., Pinkall U. (1986). Uniformization of geometric structures with applications to conformal geometry, Differential, geometry, Peñiscola, 1985. In: Naveira, A.M., Ferrández, A., Mascaró, F. (eds) Lecture Notes in Mathematics, vol 209, pp 190–209. Springer-Verlag, New York-Berlin-Heidelberg

    Google Scholar 

  71. Kulkarni R.S., Pinkall U. (1994). A canonical metric for Möbius structures and its applications. Math. Z. 216(1): 89–129

    Article  MATH  MathSciNet  Google Scholar 

  72. Labourie F. (1992). Métriques prescrites sur le bord des variétés hyperboliques de dimension 3. J. Differential Geom. 35(3): 609–626

    MATH  MathSciNet  Google Scholar 

  73. Labourie F. (1992). Surfaces convexes dans l’espace hyperbolique et \(\mathbb {C}{P}^1\) -structures J. London Math. Soc. (2) 45: 549–565

    Article  MATH  MathSciNet  Google Scholar 

  74. Labourie F. (2001). Fuchsian affine actions of surface groups. J. Differential Geom. 59(1): 15–31

    MATH  MathSciNet  Google Scholar 

  75. Lecuire, C.: Plissage des variétés hyperboliques de dimension 3. Invent. Math. 164(1), 85–141 (2006)

    Google Scholar 

  76. Lecuire, C.: Mixing invariants of hyperbolic 3-manifolds. C.R.M. preprint núm. 716, 2006

  77. Marden A. (1969). On homotopic mappings of Riemann surfaces. Ann. of Math. (2)(90(1)): 1–8

    Article  MathSciNet  Google Scholar 

  78. Martinec E. (1984). Soluble systems in quantum gravity. Phys. Rev. D 30(6): 1198–1204

    Article  MathSciNet  Google Scholar 

  79. Matsumoto S. (1987). Some remarks on foliated S 1 bundles. Invent. Math. 90(2): 343–358

    Article  MATH  MathSciNet  Google Scholar 

  80. McMullen C.T. (2000). The moduli space of Riemann surfaces is Kähler hyperbolic. Ann. of Math.(2) 151(1): 327–357

    Article  MATH  MathSciNet  Google Scholar 

  81. Mess, G.: Lorentz spacetimes of constant curvature. MSRI Preprint 90-05808, 1990

  82. Milnor T.K. (1983). Harmonic maps and classical surface theory in Minkowski 3-space. Trans. Amer. Math. Soc. 280(1): 161–185

    Article  MATH  MathSciNet  Google Scholar 

  83. Moncrief V. (1989). Reduction of the Einstein equations in 2 + 1 dimensions to a Hamiltonian system over Teichmüller space. J. Math. Phys. 30(12): 2907–2914

    Article  MATH  MathSciNet  Google Scholar 

  84. Morrill, M.M.: Non-existence of compact de Sitter manifolds. Ph.D. thesis, University of California, Los Angeles (1996)

  85. Penrose R. (1982). Some unsolved problems in classical general relativity, seminar on differential geometry. In: Yau., S.-T. (eds) Ann. Math. Stud. Vol. 102, pp 631–668. Princeton Univ. Press, Princeton

    Google Scholar 

  86. Salein F. (1997). Variétés anti-de Sitter de dimension 3 possédant un champ de Killing non trivial. C. R. Acad. Sci. Paris Sér. I Math. 324(5): 525–530

    MATH  MathSciNet  Google Scholar 

  87. Salein F. (2000). Variétés anti-de Sitter de dimension 3 exotiques. Ann. Inst. Fourier (Grenoble) 50(1): 257–284

    MATH  MathSciNet  Google Scholar 

  88. Scannell, K.P.: Flat conformal structures and causality in de Sitter manifolds. Ph.D. thesis, University of California, Los Angeles (1996)

  89. Scannell K.P. (1999). Flat conformal structures and the classification of de Sitter manifolds. Comm. Anal. Geom. 7(2): 325–345

    MATH  MathSciNet  Google Scholar 

  90. Scannell K.P. (2001). 3-manifolds which are spacelike slices of flat spacetimes. Class. Quantum Grav. 18(9): 1691–1701

    Article  MATH  MathSciNet  Google Scholar 

  91. Scannell K.P., Wolf M. (2002). The grafting map of Teichmüller space. J. Amer. Math. Soc. 15(4): 893–927

    Article  MATH  MathSciNet  Google Scholar 

  92. Schlenker J.-M. (2006). Hyperbolic manifolds with convex boundary. Invent. Math. 163(1): 109–169

    Article  MATH  MathSciNet  Google Scholar 

  93. Series, C.M.: Thurston’s bending measure conjecture for once punctured torus groups. Spaces of Kleiman groups, London Math. Soc. Lecture Note ser., vol 329, Cambridge Univ. Press, Cambridge, 2006, pp.75–89 (2006)

  94. Tan, S.P.: Representations of surface groups into PSL\((2,{\mathbb{R}})\) and geometric structures. Ph.D. thesis, University of California, Los Angeles (1988)

  95. Tan S.P. (1994). Branched \({\mathbb{CP}}^1\)-structures on surfaces with prescribed real holonomy. Math. Ann. 300(1): 649–667

    Article  MATH  MathSciNet  Google Scholar 

  96. Wood J.W. (1971). Bundles with totally disconnected structure group. Comment. Math. Helv. 46: 257–273

    Article  MATH  MathSciNet  Google Scholar 

  97. Zeghib A. (1998). On closed anti-de Sitter spacetimes. Math. Ann. 310(4): 695–716

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Scannell.

Additional information

Lars Andersson was supported in part by the NSF, contract no. DMS 0407732 and Thierry Barbot was supported by CNRS, ACI “Structures géométriques et Trous Noirs”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, L., Barbot, T., Benedetti, R. et al. Notes on a paper of Mess. Geom Dedicata 126, 47–70 (2007). https://doi.org/10.1007/s10711-007-9164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9164-6

Keywords

Mathematics Subject Classification (1991)

Navigation