Skip to main content
Log in

Weil-Petersson geometry of Teichmüller–Coxeter complex and its finite rank property

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

On a Teichmüller space, the Weil-Petersson metric is known to be incomplete. Taking metric and geodesic completions result in two distinct spaces, where the Hopf-Rinow theorem is no longer relevant due to the singular behavior of the Weil-Petersson metric. We construct a geodesic completion of the Teichmüller space through the formalism of Coxeter complex with the Teichmüller space as its non-linear non-homogeneous fundamental domain. We then show that the metric and geodesic completions both satisfy a finite rank property, demonstrating a similarity with the non-compact symmetric spaces of semi-simple Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abikoff W.: Degenerating families of Riemann surfaces. Ann. Math. 105(2), 29–44 (1977)

    Article  MathSciNet  Google Scholar 

  2. Alexander S., Bishop R.: The Hadamard-Cartan theorem in locally convex spaces. Enseign. Math. 36, 309–320 (1990)

    MATH  MathSciNet  Google Scholar 

  3. Ballmann W.: Lectures on spaces of nonpositive curvature. DMV Seminar 25 Birkhäuser, Basel (1995)

    MATH  Google Scholar 

  4. Bers, L.: Spaces of degenerating Riemann surfaces. In: Discontinuous groups and Riemann surfaces. Ann. Math. Studies, No. 79. Princeton University Press, Princeton, NJ (1974)

  5. Behrstock J., Minsky Y.: Dimension and rank for mapping class groups. Ann. Math. 167(2), 1055–1077 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourbaki N.: Groupes et algébres de Lie. Hermann, Paris (1981)

    MATH  Google Scholar 

  7. Bridson M., Haefliger A.: Metric spaces of non-positive curvature. Springer, Berlin (1999)

    MATH  Google Scholar 

  8. Corlette K.: Flat G-bundles with canonical metrics. J. Diff. Geom. 28, 361–382 (1988)

    MATH  MathSciNet  Google Scholar 

  9. Daskalopoulos G., Wentworth R.: Classification of Weil-Petersson isometries. Amer. J. Math. 125, 941–975 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Davis M.: The geometry and topology of coxeter groups. Princeton University Press, Princeton (2007)

    Google Scholar 

  11. Gromov, M.: Hyperbolic Groups. In: Gersten, S.M. (ed.) Essays in Group Theory, vol. 8, pp. 75–263. Springer Verlag, MSRI Publ. (1987)

  12. Gromov M., Schoen R.: Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. IHES Publ. Math. 76, 165–246 (1992)

    MATH  MathSciNet  Google Scholar 

  13. Ivanov N.: Automorphisms of complexed of curves and of Teichmüller spaces. Inter. Math. Res. Notices. 14, 651–666 (1997)

    Article  Google Scholar 

  14. Jost J.: Two-dimensional geometric Variational Problems. Wiley–Interscience Publication John Wiley & Sons Ltd, Chichester (1991)

    MATH  Google Scholar 

  15. Korkmaz M.: Automorphisms of complex of curves on punctured spheres and on punctured tori. Topology Appl. 95(2), 85–111 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Korevaar N., Schoen R.: Global existence theorems for harmonic maps to non-locally compact spaces. Comm. Anal. Geom. 5, 333–387 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Korevaar, N., Schoen, R.: Global existence theorems for harmonic maps: finite rank spaces and an approach to rigidity for smooth actions. Preprint

  18. Luo F.: Automorphisms of the complex of curves. Topology 39(2), 283–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Masur H.: Extension of the Weil-Petersson metric to the boundary of Teichmüller space. Duke Math. 43, 267–304 (1976)

    Article  MathSciNet  Google Scholar 

  20. Mok N., Siu Y.-T., Yeung S.-K.: Geometric superrigidity. Invent. Math. 113, 57–83 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Masur H., Wolf M.: The Weil-Petersson isometry group. Geom. Dedicata. 93, 177–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Reshetnyak Y.: On the theory of spaces of curvature not greater than K. Mat. Sb. 52, 789–798 (1960)

    MathSciNet  Google Scholar 

  23. Rockafellar R.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  24. Tromba A.: On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric. Manuscripta. Math. 56(4), 475–497 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wolpert S.: Geodesic Length functions and the Nielsen problem. J. Diff. Geom. 25, 119–145 (1986)

    Google Scholar 

  26. Wolpert, S.: Geometry of the Weil-Petersson completion of Teichmüller space. In: Surveys in differential geometry VIII: papers in honor of Calabi, Lawson, Siu and Uhlenbeck. Intl. Press, Cambridge, MA (2003)

  27. Wolpert S.: Behavior of geodesic-length functions on Teichmüller space. J. Diff. Geom. 79, 277–334 (2008)

    MATH  MathSciNet  Google Scholar 

  28. Wolpert S.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85(1), 119–145 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yamada S.: Weil-Petersson convexity of the energy functional on classical and universal Teichmüller spaces. J. Diff. Geom. 51, 35–96 (1999)

    MATH  Google Scholar 

  30. Yamada S.: On the geometry of Weil-Petersson completion of Teichmüller spaces. Math. Res. Let. 11, 327–344 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumio Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, S. Weil-Petersson geometry of Teichmüller–Coxeter complex and its finite rank property. Geom Dedicata 145, 43–63 (2010). https://doi.org/10.1007/s10711-009-9401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-009-9401-2

Keywords

Mathematics Subject Classification (2000)

Navigation