Skip to main content
Log in

Gravitational wave detection: stochastic resonance method with matched filtering

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Along with the development of the interferometric gravitational wave detector, we enter into an epoch of the gravitational wave astronomy, which will open a brand new window for astrophysics to observe our universe. However, the gravitational wave detection is a typical weak signal detection, and this weak signal is buried in a strong instrument noise. To our knowledge, almost all of the data analysis methods in gravitational wave detection at present are based on a matched filtering. So it is desirable to take advantage of stochastic resonance methods. However, the all of the stochastic resonance methods are general based on a Fourier transformation and fall short of the matched filtering as a usable technique. In this paper we relate the stochastic resonance to the matched filtering. Our results show that the stochastic resonance can indeed be combined with the matched filtering for both the periodic and the non-periodic input signal. This encouraging result will be the first step to apply the stochastic resonance to the matched filtering in gravitational wave detection. Moreover, based on the matched filtering, we firstly propose a novel measurement method for the stochastic resonance which is valid for both the periodic and the non-periodic driven signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi R., Sutera A., Vulpiani A.: J. Phys. A 14, L453 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  2. Nicolis C.: Sol. Phys. 74, 473 (1981)

    Article  ADS  Google Scholar 

  3. Nicolis C.: Tellus 34, 1 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  4. Gammaitoni L., Haenggi P., Jung P., Marchesoni F.: Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  5. Wellens, T., Shatokhin, V., Buchleitner, A.: Rep. Prog. Phys. 67, 45 and the references there (2004)

  6. Bezrukov S., Vodyanoy I.: Nature (London) 378, 362 (1995)

    Article  ADS  Google Scholar 

  7. Bezrukov S., Vodyanoy I.: ibid 385, 319 (1997)

    ADS  Google Scholar 

  8. Bezrukov S., Vodyanoy I.: ibid 386, 738 (1997)

    ADS  Google Scholar 

  9. Berdichevsky V., Gitterman M.: Europhys. Lett. 36, 161 (1996)

    Article  ADS  Google Scholar 

  10. Lofstedt R., Coppersmith S.: Phys. Rev. Lett. 72, 1947 (1994)

    Article  ADS  Google Scholar 

  11. Grifoni M., Hanggi P.: Phys. Rev. Lett. 76, 1611 (1996)

    Article  ADS  Google Scholar 

  12. Buchleitner A., Mantegna R.: Phys. Rev. Lett. 80, 3932 (1998)

    Article  ADS  Google Scholar 

  13. Dykman M. et al.: Phys. Rev. Lett. 68, 2985 (1992)

    Article  ADS  Google Scholar 

  14. Landau L., Lifshitz E.: Physique Statistique Sec. 124. Mir, Moscow (1984)

    Google Scholar 

  15. Galdi, V., Pierro, V., Pinto, I.: Gravitational waves. In: Coccia, E., Veneziano, G., Pizzella, G. (eds.) Second Edoardo Amaldi Conference held in CERN, Switzerland, 1–4 July 1997, p. 532. World Scientific (1998)

  16. Jung P., Hanggi P.: Phys. Rev. A 44, 8032 (1991)

    Article  ADS  Google Scholar 

  17. Gong D. et al.: Phys. Rev. A 46, 3243 (1992)

    Article  ADS  Google Scholar 

  18. Gong D. et al.: Phys. Rev. A 48, 4862E (1993)

    ADS  Google Scholar 

  19. Inchiosa M., Bulsara A.: Phys. Rev. E 52, 327 (1995)

    Article  ADS  Google Scholar 

  20. Inchiosa M., Bulsara A.: ibid 53, R2021 (1996)

    ADS  Google Scholar 

  21. Loerincz K. et al.: Phys. Lett. A 224, 63 (1996)

    Article  ADS  Google Scholar 

  22. Galdi V., Pierro V., Pinto I.: Phys. Rev. E 57, 6470 (1998)

    Article  ADS  Google Scholar 

  23. Gammaitoni L. et al.: Phys. Lett. A 142, 59 (1989)

    Article  ADS  Google Scholar 

  24. Karapetyan G.: Opt. Commun. 238, 35 (2004)

    Article  ADS  Google Scholar 

  25. Karapetyan G.: Phys. Rev. D 73, 122003 (2006)

    Article  ADS  Google Scholar 

  26. www.ligo.org

  27. Thorne, K.: 300 Years of Gravitation. In: Hawking, S., Israel, W. (eds.) pp. 330–458. Cambridge University Press, Cambridge, England (1987)

  28. Cutler C., Flanagan E.: Phys. Rev. D 49, 2658 (1994)

    Article  ADS  Google Scholar 

  29. Owen B., Sathyaprakash B.: Phys. Rev. D 60, 022002 (1999)

    Article  ADS  Google Scholar 

  30. Babak S. et al.: Classic. Quantum Gravit. 23, 5477 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Babak S., Grote H., Hewitson M., Luck H., Strain K.A.: Phys. Rev. D 72, 022002 (2005)

    Article  ADS  Google Scholar 

  32. Tsunesada Y. et al.: Phys. Rev. D 71, 103005 (2005)

    Article  ADS  Google Scholar 

  33. Lofstedt R., Coppersmith S.: Phys. Rev. E 49, 4821 (1994)

    Article  ADS  Google Scholar 

  34. Heneghan C. et al.: Phys. Rev. E 54, 2228 (1996)

    Article  ADS  Google Scholar 

  35. Greenwood P. et al.: Phys. Rev. Lett. 84, 4773 (2000)

    Article  ADS  Google Scholar 

  36. Neiman A. et al.: Phys. Rev. Lett. 76, 4299 (1996)

    Article  ADS  Google Scholar 

  37. Goychuk I., Hanggi P.: Phys. Rev. E 61, 4272 (2000)

    Article  ADS  Google Scholar 

  38. Robinson J., Asraf D., Bulsara A., Inchiosa M.: Phys. Rev. Lett. 81, 2850 (1998)

    Article  ADS  Google Scholar 

  39. Collins J., Chow C., Imhoff T.: Nature (London) 376, 236 (1995)

    Article  ADS  Google Scholar 

  40. Collins J., Chow C., Imhoff T.: Phys. Rev. E 52, 3321 (1995)

    Article  ADS  Google Scholar 

  41. Kantz H., Schreiber T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  42. Caulfield H.: Appl. Opt. 21, 4391 (1982)

    Article  ADS  Google Scholar 

  43. Hu G., Qing G., Gong D., Wen X.: Phys. Rev. A 44, 6414 (1991)

    Article  ADS  Google Scholar 

  44. Cao Z., Li P., Hu G.: Chin. Phys. Lett. 24, 882 (2006)

    ADS  Google Scholar 

  45. Hu G. et al.: Phys. Rev. A 46, 3250 (1992)

    Article  ADS  Google Scholar 

  46. Gammaitoni L., Marchesoni F., Menichella-Saetta E., Santucci S.: Phys. Rev. Lett. 62, 349 (1989)

    Article  ADS  Google Scholar 

  47. Gammaitoni L., Marchesoni F., Santucci S.: Phys. Rev. Lett. 74, 1052 (1995)

    Article  ADS  Google Scholar 

  48. Neiman A., Schimansky-Geier L.: Phys. Rev. Lett. 72, 2988 (1994)

    Article  ADS  Google Scholar 

  49. Jia Y., Yu S., Li J.: Phys. Rev. E 62, 1869 (2000)

    Article  ADS  Google Scholar 

  50. Zhou T., Moss F., Jung P.: Phys. Rev. A 2, 3161 (1990)

    Article  ADS  Google Scholar 

  51. Risken H.: The Fokker-Planck Equation: Methods of Solution and Applications. Springer, New York (1983)

    Google Scholar 

  52. Press W., Flannery B., Teukolsky S., Vetterling W.: Numerical Recipes. Cambridge University Press, Cambridge (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Yang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, LF., Zhu, JY. Gravitational wave detection: stochastic resonance method with matched filtering. Gen Relativ Gravit 43, 2991–3000 (2011). https://doi.org/10.1007/s10714-011-1218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1218-2

Keywords

Navigation