Skip to main content
Log in

Group Field Theory: An Overview

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We give a brief overview of the properties of a higher-dimensional generalization of matrix model which arise naturally in the context of a background approach to quantum gravity, the so-called group field theory. We show in which sense this theory provides a third quantization point-of-view on quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambjorn, J., Durhuus, B., and Jonsson, T. (1991). Three-dimensional simplicial quantum gravity and generalized matrix models. Modern Physics Letters A 6, 1133.

    MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. and Lewandowski, J. (2004). Background independent quantum gravity: A status report. Classical Quantum Gravity 21, R53 (2004) [arXiv:gr-qc/0404018].

  • Baez, J. C. (1996). Four-Dimensional BF theory with cosmological term as a topological quantum field theory. Letters of Mathematical Physics 38, 129 [arXiv:q-alg/9507006].

    MathSciNet  MATH  Google Scholar 

  • Baez, J. C. (1998). Spin foam models. Classical Quantum Gravity 15, 1827 [arXiv:gr-qc/9709052].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Barrett, J. W. (1998). The Classical evaluation of relativistic spin networks. Advances in Theoretical Mathematical Physics 2, 593 [arXiv:math.qa/9803063].

    MathSciNet  MATH  Google Scholar 

  • Barrett, J. W. and Crane, L. (1998). Relativistic spin networks and quantum gravity. Journal of Mathematical Physics 39, 3296 [arXiv:gr-qc/9709028].

    Article  MathSciNet  ADS  Google Scholar 

  • Barrett, J. W. and Crane, L. (2000). A Lorentzian signature model for quantum general relativity. Classical Quantum Gravity 17, 3101 [arXiv:gr-qc/9904025].

    MathSciNet  ADS  Google Scholar 

  • Boulatov, D. V. (1992). A Model of three-dimensional lattice gravity. Modern Physics Letters A 7, 1629 [arXiv:hep-th/9202074].

    MathSciNet  MATH  ADS  Google Scholar 

  • De Pietri, R. and Petronio, C. (2000). Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. Journal of Mathematical Physics 41, 6671 [arXiv:gr-qc/0004045].

    Article  MathSciNet  ADS  Google Scholar 

  • De Pietri, R. (2001). Matrix model formulation of four dimensional gravity. Nuclear Physics Proceedings Supplementary 94, 697. [arXiv:hep-lat/0011033].

    ADS  Google Scholar 

  • De Pietri, R. and Freidel, L. (1999). so(4) Plebanski Action and Relativistic Spin Foam Model. Classical Quantum Gravity 16, 2187 [arXiv:gr-qc/9804071].

    MathSciNet  ADS  Google Scholar 

  • De Pietri, R., Freidel, L., Krasnov, K., and Rovelli, C. (2000). Barrett–Crane model from a Boulatov-Ooguri field theory over a homogeneous space. Nuclear Physics B 574, 785 [arXiv: hep-th/9907154].

    Article  MathSciNet  ADS  Google Scholar 

  • Di Francesco, P., Ginsparg, P. H., and Zinn-Justin, J. (1995). 2-D Gravity and random matrices. Physical Report 254, 1 [arXiv:hep-th/9306153].

    MathSciNet  ADS  Google Scholar 

  • Freidel, L. (2000). A Ponzano–Regge model of Lorentzian 3-dimensional gravity. Nuclear Physics Proceedings Supplementary 88, 237 [arXiv:gr-qc/0102098].

    MathSciNet  ADS  Google Scholar 

  • Freidel, L. and Krasnov, K. (1999). Spin foam models and the classical action principle. Advances in Theoretical Mathematical Physics 2, 1183 [arXiv:hep-th/9807092].

    MathSciNet  Google Scholar 

  • Freidel, L. and Krasnov, K. (2000). Simple spin networks as Feynman graphs. Journal of Mathematical Physics 41, 1681 [arXiv:hep-th/9903192].

    Article  MathSciNet  ADS  Google Scholar 

  • Freidel, L. and Louapre, D. (2003). Diffeomorphisms and spin foam models. Nuclear Physics B 662, 279 [arXiv:gr-qc/0212001].

    Article  MathSciNet  ADS  Google Scholar 

  • Freidel, L., Krasnov, K., and Puzio, R. (1999). BF description of higher-dimensional gravity theories. Advances in Theoretical Mathematical Physics 3, 1289 [arXiv:hep-th/9901069].

    MathSciNet  Google Scholar 

  • Livine, R., Perez, A., and Rovelli, C. (2001) 2d manifold-independent spinfoam theory, arXiv: gr-qc/0102051.

  • Markopoulou, F. and Smolin, L. (1997). Causal evolution of spin networks. Nuclear Physics B 508, 409 [arXiv:gr-qc/9702025].

    Article  MathSciNet  ADS  Google Scholar 

  • Mikovic, A. (2003). Spin foam models of Yang–Mills theory coupled to gravity. Classical Quantum Gravity 20, 239 [arXiv:gr-qc/0210051].

    MathSciNet  MATH  ADS  Google Scholar 

  • Okolow, A. and Lewandowski, J. (2003). Diffeomorphism covariant representations of the holonomy-flux *-algebra. Classical Quantum Gravity 20, 3543 [arXiv:gr-qc/0302059].

    MathSciNet  ADS  Google Scholar 

  • Ooguri, H. (1992). Topological lattice models in four-dimensions. Modern Physics Letters A 7, 2799 [arXiv:hep-th/9205090].

    MathSciNet  MATH  ADS  Google Scholar 

  • Oriti, D. and Pfeiffer, H. (2002). A spin foam model for pure gauge theory coupled to quantum gravity. Physical Review D 66, 124010 [arXiv:gr-qc/0207041].

    Article  MathSciNet  ADS  Google Scholar 

  • Oriti, D. and Williams, R. M. (2001). Gluing 4-simplices: A derivation of the Barrett–Crane spin foam model for Euclidean quantum gravity. Physical Review D 63, 024022 [arXiv:gr-qc/0010031].

    Article  MathSciNet  ADS  Google Scholar 

  • Perez, A. (2001). Finiteness of a spinfoam model for Euclidean quantum general relativity. Nuclear Physics B 599, 427 [arXiv:gr-qc/0011058].

    MathSciNet  MATH  ADS  Google Scholar 

  • Perez, A. (2003). Spin foam models for quantum gravity, Class. Quantum Gravity 20, R43 [arXiv: gr-qc/0301113].

    MATH  ADS  Google Scholar 

  • Perez, A. and Rovelli, C. (2001). Observables in quantum gravity, arXiv:gr-qc/0104034.

  • Perez, A. and Rovelli, C. (2001). A spin foam model without bubble divergences. Nuclear Physics B 599, 255 [arXiv:gr-qc/0006107].

    MathSciNet  ADS  Google Scholar 

  • Ponzano, G. and Regge, T. (1968). Semiclassical limit of Racah coefficients. In Spectroscopic and Group Theoretical Methods in Physics, Racah Memorial Volume, F. Block et al. eds., North Holland, Amsterdam.

  • Reisenberger, M. P. (1994). World sheet formulations of gauge theories and gravity, arXiv:gr-qc/9412035.

  • Reisenberger, M. P. and Rovelli, C. (1997). *Sum over surfaces* form of loop quantum gravity. Physical Review D: Particles and Fields 56, 3490 [arXiv:gr-qc/9612035].

    MathSciNet  ADS  Google Scholar 

  • Reisenberger, M. P. and Rovelli, C. (2001). Spacetime as a Feynman diagram: The connection formulation. Classical and Quantum Gravity 18, 121 [arXiv:gr-qc/0002095].

    Article  MathSciNet  ADS  Google Scholar 

  • Sahlmann, H. (2002). Some comments on the representation theory of the algebra underlying loop quantum gravity. arXiv:gr-qc/0207111.

  • Sahlmann, H. and Thiemann, T. (2003). Irreducibility of the Ashtekar–Isham–Lewandowski representation. arXiv:gr-qc/0303074.

  • Thiemann, T. (1998). Quantum spin dynamics (QSD). Classical and Quantum Gravity 15, 839 [arXiv:gr-qc/9606089].

    MathSciNet  MATH  ADS  Google Scholar 

  • Turaev, V. G. and Viro, O. Y. (1992). State sum invariants of 3 manifolds and quantum 6j symbols. Topology 31, 865.

    Article  MathSciNet  Google Scholar 

  • Witten, E. (1988). (2 + 1)-Dimensional Gravity as an exactly soluble system. Nuclear Physics B 311, 46.

    Article  MathSciNet  ADS  Google Scholar 

  • Witten, E. (1991). On quantum gauge theories in two-dimensions. Communications in Mathematical Physics 141, 153.

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Freidel.

Additional information

Prepared for the proceedings of Peyresq Physics 9Meeting: Micro and Macro Structureof Spacetime, Peyresq, France, 19-26 June 2004.

5 Except in 2 + 1 dimension (Witten, 1988).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freidel, L. Group Field Theory: An Overview. Int J Theor Phys 44, 1769–1783 (2005). https://doi.org/10.1007/s10773-005-8894-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-8894-1

Keywords

Navigation