Skip to main content
Log in

Quantum Observables Algebras and Abstract Differential Geometry: The Topos-Theoretic Dynamics of Diagrams of Commutative Algebraic Localizations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We construct a sheaf-theoretic representation of quantum observables algebras over a base category equipped with a Grothendieck topology, consisting of epimorphic families of commutative observables algebras, playing the role of local arithmetics in measurement situations. This construction makes possible the adaptation of the methodology of Abstract Differential Geometry (ADG), à la Mallios, in a topos-theoretic environment, and hence, the extension of the “mechanism of differentials” in the quantum regime. The process of gluing information, within diagrams of commutative algebraic localizations, generates dynamics, involving the transition from the classical to the quantum regime, formulated cohomologically in terms of a functorial quantum connection, and subsequently, detected via the associated curvature of that connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Artin, M., Grothendieck, A., and Verdier, J. L. (1972). Theorie de topos et cohomologie etale des schemas, Springer LNM 269 and 270, Springer-Verlag, Berlin.

    Google Scholar 

  • Bell, J. L. (1986). From absolute to local mathematics. Synthese 69.

  • Bell, J. L. (1988). Toposes and Local Set Theories, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Bell, J. L. (2001). Observations on category theory. Axiomathes 12.

  • Bell, J. L. (1982). Categories, toposes and sets. Synthese 51(3).

  • Bohr, N. (1958). Atomic Physics and Human Knowledge, John Wiley, New York.

    MATH  Google Scholar 

  • Borceaux, F. (1994). Handbook of Categorical Algebra, Vols. 1–3, Cambridge U. P., Cambridge.

    Google Scholar 

  • Bub, J. (1997). Interpreting the Quantum World, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Butterfield, J. and Isham, C. J. (1998). A topos perspective on the Kochen—Specker theorem: I. Quantum states as generalized valuations. International Journal of Theoretical Physics 37, 2669.

    Article  MATH  MathSciNet  Google Scholar 

  • Butterfield, J. and Isham, C. J. (1999). A topos perspective on the Kochen—Specker theorem: II. Conceptual aspects and classical analogues. International Journal of Theoretical Physics 38, 827.

    Article  MATH  MathSciNet  Google Scholar 

  • Butterfield, J. and Isham, C. J. (2000). Some possible roles for topos theory in quantum theory and quantum gravity. Foundations of Physics 30, 1707.

    Article  MathSciNet  Google Scholar 

  • Davis, M. (1977). A relativity principle in quantum mechanics. International Journal of Theoretical Physics 16, 867.

    Article  ADS  MathSciNet  Google Scholar 

  • Dieks, D. J. (1993). Quantum mechanics and experience. Studies in History and Philosophy of Modern Physics, 23.

  • Folse, H. J. (1985). The Philosophy of Niels Bohr. The Framework of Complementarity, North-Holland, New York.

    Google Scholar 

  • Kelly, G. M. (1971). Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series 64, Cambridge U. P., Cambridge.

    Google Scholar 

  • Lawvere, F. W. and Schanuel, S. H. (1997). Conceptual Mathematics, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • MacLane, S. (1971). Categories for the Working Mathematician, Springer-Verlag, New York.

    Google Scholar 

  • MacLane, S. and Moerdijk, I. (1992). Sheaves in Geometry and Logic, Springer-Verlag, New York.

    Google Scholar 

  • Mallios, A. (1998). Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, vols. 1–2, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Mallios, A. (2003). Remarks on “singularities.” Progress in Mathematical Physics, Columbus, F. (Ed.), Nova Science Publishers, Hauppauge, New York (invited paper), gr-qc/0202028.

    Google Scholar 

  • Mallios, A. (2004a). On localizing topological algebras. Contemporary Mathematics 341, gr-qc/0211032.

  • Mallios, A. (2004b) Geometry and Physics Today, physics/0405112.

  • Mallios, A. (2005a). On Algebra Spaces, preprint.

  • Mallios, A. (2005b). Modern Differential Geometry in Gauge Theories: Vol. 1. Maxwell Fields, Birkhäuser, Boston.

    Google Scholar 

  • Mallios, A. (2006a). Quantum gravity and “singularities.” Note di Matematica, in press (invited paper), physics/0405111.

  • Mallios, A. (2006b). Modern Differential Geometry in Gauge Theories: Vol. 2. Yang-Mills Fields, forthcoming by Birkhäuser, Boston.

    Google Scholar 

  • Mallios, A. and Raptis, I. (2004). C∞-Smooth Singularities Exposed: Chimeras of the Differential Spacetime Manifold, gr-qc/0411121.

  • Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology. Acta Appl. Math. 55, 231.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de Rham cohomology. Acta Appl. Math. 67, 59.

    Article  MATH  MathSciNet  Google Scholar 

  • Raptis, I. (2001). Presheaves, Sheaves, and their Topoi in Quantum Gravity and Quantum Logic, gr-qc/0110064.

  • Rawling, J. P. and Selesnick, S. A. (2000). Orthologic and quantum logic. Models and computational elements. Journal of the Association for Computing Machinery 47, 721.

    MathSciNet  Google Scholar 

  • Selesnick, S. A. (2004). Quanta, Logic and Spacetime (2nd. ed), World Scientific.

  • Takeuti, G. (1978). Two applications of logic to mathematics. Mathematical Society of Japan 13, Kano Memorial Lectures 3.

  • Varadarajan, V. S. (1968). Geometry of Quantum Theory, Vol. 1, Van Nostrand, Princeton, New Jersey.

    Google Scholar 

  • Zafiris, E. (2001). Probing quantum structure through Boolean localization systems for measurement of observables. International Journal of Theoretical Physics 39(12).

  • Zafiris, E. (2004a). Boolean coverings of quantum observable structure: A setting for an abstract differential geometric mechanism. Journal of Geometry and Physics 50, 99.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Zafiris, E. (2004b). Quantum Event Structures from the perspective of Grothendieck Topoi. Foundations of Physics 34(7).

  • Zafiris, E. (2004c). Interpreting observables in a quantum world from the categorial standpoint. International Journal of Theoretical Physics 43(1).

  • Zafiris, E. (2006). Generalized topological covering systems on quantum events structures. Journal of Physics A: Mathematical and General 39.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Zafiris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafiris, E. Quantum Observables Algebras and Abstract Differential Geometry: The Topos-Theoretic Dynamics of Diagrams of Commutative Algebraic Localizations. Int J Theor Phys 46, 319–382 (2007). https://doi.org/10.1007/s10773-006-9223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9223-z

Key Words

Navigation