Skip to main content
Log in

Fractional Electromagnetic Equations Using Fractional Forms

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The generalized physics laws involving fractional derivatives give new models and conceptions that can be used in complex systems having memory effects. Using the fractional differential forms, the classical electromagnetic equations involving the fractional derivatives have been worked out. The fractional conservation law for the electric charge and the wave equations were derived by using this method. In addition, the fractional vector and scalar potentials and the fractional Poynting theorem have been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A. Math. Gen. 39, 10375 (2006)

    Article  MATH  ADS  Google Scholar 

  3. Baleanu, D., Muslih, S.: Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72, 119 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czech. J. Phys. 56, 1087 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Baleanu, D., Muslih, S., Tas, K.: Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. 47, 103503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K.: Fractional Nambu mechanics. Int. J. Theor. Phys. 48, 1044 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K.: The dual action of fractional multi time Hamilton equations. Int. J. Theor. Phys. doi:10.1007/s10773-009-0042-x

  8. Baleanu, D., Golmankhaneh, A.K., Nigmatullin, R., Golmankhaneh, A.K.: Fractional Newtonian mechanics. Cent. Eur. J. Phys. doi:10.2478/s11534-009-0085-x

  9. Ben Adda, F.: Geometric interpretation of the fractional derivative. J. Fract. Calc. 11, 21 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Ben Adda, F.: Interpretation geometrique de la differentiabilite et du gradient d’ordre reel. C.R. Acad. Sci. Paris, Serie I 326, 931 (1998)

    MATH  ADS  MathSciNet  Google Scholar 

  11. Cottril-Shepherd, N.M.: Fractional differential forms II. arXiv:math-ph/0301016v1

  12. Cottril-Shepherd, N.M.: Fractional differential forms. J. Math. Phys. 42, 2203 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Flanders, H.: Differential Forms with Applications to the Physics Sciences. Dover, New York (1989)

    Google Scholar 

  14. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334, 834 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  16. Golmankhaneh, A.K.: Fractional Poisson bracket. Turk. J. Phys. 32, 241 (2008)

    Google Scholar 

  17. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Google Scholar 

  18. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  19. Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiate functions and dimensions. Chaos 6, 505 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Kolwankar, K.M., Gangal, A.D.: Local fractional Fokker-Planck equation. Phys. Rev. Lett. 80, 214 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Klimek, K.: Fractional sequential mechanics-models with symmetric fractional derivative. Czech. J. Phys. 51, 1348 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Klimek, K.: Lagrangian and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52, 1247 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000)

    ADS  Google Scholar 

  24. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    ADS  MathSciNet  Google Scholar 

  25. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, New York (2006)

    Google Scholar 

  26. Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Application. Wiley, New York (1993)

    Google Scholar 

  27. Muslih, S., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974)

    MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic, New York (1999)

    MATH  Google Scholar 

  30. Rabei, E.M., Nawafleh, K.I., Hiijawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rabei, E.M., Tarawneh, D.M., Muslih, S.I., Baleanu, D.: Heisenberg’s equations of motion with fractional derivatives. J. Vibr. Control. 13, 239 (2007)

    MathSciNet  Google Scholar 

  32. Rabei, E.M., Almayteh, I., Muslih, S., Baleanu, D.: Hamilton-Jacobi formulation of systems within Caputo’s fractional derivative. Phys. Scr. 77, 015101 (2008)

    Article  Google Scholar 

  33. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890 (1996)

    ADS  MathSciNet  Google Scholar 

  34. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581 (1997)

    ADS  MathSciNet  Google Scholar 

  35. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  36. Tarasov, V.E.: Fractional variations for dynamical systems: Hamilton and Lagrange approaches. J. Phys. A 39, 8409 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Tarasov, V.E.: Fractional generalization of gradient and Hamiltonian systems. J. Phys. A 38, 5929 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. West, B.J., Bologna, M., Grigolini, P.: Physics of fractal operators. Springer, New York (2005)

    Google Scholar 

  40. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  41. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K. et al. Fractional Electromagnetic Equations Using Fractional Forms. Int J Theor Phys 48, 3114–3123 (2009). https://doi.org/10.1007/s10773-009-0109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-009-0109-8

Keywords

Navigation