Skip to main content
Log in

Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A discontinuous media can be described by fractal dimensions. Fractal objects has special geometric properties, which are discrete and discontinuous structure. A fractal-time diffusion equation is a model for subdiffusive. In this work, we have generalized the Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so one can use as a new mathematical model for the motion in the fractal media. More, Poisson bracket on fractal subset of real line is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1977)

    Google Scholar 

  2. Bunde, A., Havlin, S. (eds.): Fractal in Science. Springer, Berlin (1995)

    Google Scholar 

  3. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpinsski gasket. Probab. Theory Relat. Fields 79, 543–623 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  5. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  6. Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  7. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (1990)

    MATH  Google Scholar 

  8. Falconer, K.: Techniques in Fractal Geometry. Wiley, New York (1997)

    MATH  Google Scholar 

  9. Edgar, G.A.: Integral, Probability and Fractal Measures. Springer, New York (1998)

    Book  MATH  Google Scholar 

  10. Yang, X.J.: Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York (2012)

    Google Scholar 

  11. Yang, X.J., Baleanu, D.: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 17(2), 625 (2013)

    Article  Google Scholar 

  12. Ming-Sheng, H., Agarwal Ravi, P., Yang, X.J.: Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. (2012). doi:10.1155/2012/567401

    Google Scholar 

  13. Yang, X.J., Srivastava, H.M., He, J.H., Baleanu, D.: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 377, 1696 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  14. Su, W.H., Yang, X.J., Jafari, H., Baleanu, D.: Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. Adv. Differ. Equ. 2013(1), 97 (2013)

    Article  MathSciNet  Google Scholar 

  15. Satin, S., Gangal, A.D.: 2011, Random walk and broad distributions on fractal curves. arXiv preprint. arXiv:1103.5249

  16. Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 6, 505 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Kolwankar, K.M., Gangal, A.D.: Local fractional Fokker-Planck equation. Phys. Rev. Lett. 80, 214 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Adda, F.B., Cresson, J.: About non-differentiable functions. J. Math. Anal. Appl. 263, 721–737 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Baleanu, D., Golmankhaneh, K.A., Golmankhaneh, K.A., Baleanu, M.C.: Fractional electromagnetic equations using fractional forms. Int. J. Theor. Phys. 48, 3114–3123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golmankhaneh, K.A., Yengejeh, M.A., Baleanu, D.: On the fractional Hamilton and Lagrange mechanics. Int. J. Theor. Phys. 51, 2909–2916 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golmankhaneh, K.A., Fazlollahi, V., Baleanu, D.: Newtonian mechanics on fractals subset of real-line. Rom. Rep. Phys. 65, 84–93 (2013)

    Google Scholar 

  22. Golmankhaneh, K.A., Golmankhaneh, K.A., Baleanu, D.: About Maxwell’s equations on fractal subsets of R 3. Cent. Eur. J. Phys. (2013). doi:10.2478/s11534-013-0192-6

    Google Scholar 

  23. Rocco, A., West, B.J.: Fractional calculus and evolution of fractal phenomena. Physica A 265, 535 (1999)

    Article  Google Scholar 

  24. Barlow, M.T.: Diffusion on Fractals. Lecture Notes Math., vol. 1690. Springer, Berlin (1998)

    Google Scholar 

  25. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Physica D 76, 110 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  28. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivative—Theory and Applications. Gordon and Breach, New York (1993)

    Google Scholar 

  29. Metzler, R., Barkai, E., Klafter, J.: Anomalus diffusion and relaxation close thermal equilibrium: a fractional Fokker-Planck equation approach. Phys. Rev. Lett. 83, 3563 (1999)

    Article  ADS  Google Scholar 

  30. Metzler, R., Glöckle, W.G., Nonnenmacher, T.F.: Fractional model equation for anomalous diffusion. Physica A 13, 211 (1994)

    Google Scholar 

  31. Freiberg, U., Zähle, M.: Harmonic calculus on fractals—a measure geometric approach II. Trans. Am. Math. Soc. 357.9, 3407–3423 (2005)

    Google Scholar 

  32. Dalrymple, K., Strichartz, R.S., Vinson, J.P.: Fractal differential equations on the Sierpinski gasket. J. Fourier Anal. Appl. 5, 205 (1999)

    Article  MathSciNet  Google Scholar 

  33. Strichartz, R.S.: Differential Equations of Fractals. Princeton University Press, New Jersey (2006)

    Google Scholar 

  34. Parvate, A., Gangal, A.D.: Calculus on fractal subsets of real line-I: formulation. Fractals 17, 53–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golmankhaneh, A.K., Golmankhaneh, A.K. & Baleanu, D. Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line. Int J Theor Phys 52, 4210–4217 (2013). https://doi.org/10.1007/s10773-013-1733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1733-x

Keywords

Navigation